On the Mesoporogen-Free Synthesis of Single-Crystalline Hierarchically Structured ZSM-5 Zeolites in a Quasi-Solid-State System.

Chemistry

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P.R. China.

Published: June 2016

Hierarchically structured zeolites (HSZs) have gained much academic and industrial interest owing to their multiscale pore structures and consequent excellent performances in varied chemical processes. Although a number of synthetic strategies have been developed in recent years, the scalable production of HSZs single crystals with penetrating and three-dimensionally (3-D) interconnected mesopore systems but without using a mesoscale template is still a great challenge. Herein, based on a steam-assisted crystallization (SAC) method, we report a facile and scalable strategy for the synthesis of single-crystalline ZSM-5 HSZs by using only a small amount of micropore-structure-directing agents (i.e., tetrapropylammonium hydroxide). The synthesized materials exhibited high crystallinity, a large specific surface area of 468 m(2)  g(-1) , and a pore volume of 0.43 cm(3)  g(-1) without sacrificing the microporosity (≈0.11 cm(3)  g(-1) ) in a product batch up to 11.7 g. Further, a kinetically controlled nucleation-growth mechanism is proposed for the successful synthesis of single-crystalline ZSM-5 HSZs with this novel process. As expected, compared with the conventional microporous ZSM-5 and amorphous mesoporous Al-MCM-41 counterparts, the synthesized HSZs exhibited significantly enhanced activity and stability and prolonged lifetime in model reactions, especially when bulky molecules were involved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201504813DOI Listing

Publication Analysis

Top Keywords

synthesis single-crystalline
12
hierarchically structured
8
single-crystalline zsm-5
8
zsm-5 hszs
8
hszs
5
mesoporogen-free synthesis
4
single-crystalline hierarchically
4
zsm-5
4
structured zsm-5
4
zsm-5 zeolites
4

Similar Publications

BN-Acene Ladder with Enhanced Charge Transport for Organic Field-Effect Transistors.

Angew Chem Int Ed Engl

December 2024

Tsinghua University, Department of Chemistry, 1 Qinghuayuan, Haidian District, 100084, Beijing, CHINA.

The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.

View Article and Find Full Text PDF

We report on the synthesis of lead(II) carbonate-containing nanoparticles using the polyol process under high-energy ultrasound or microwave irradiation as alternate energization methods. Five carbonate source precursors are used in the reaction, and the precipitation reactions generate four different crystal products, depending on the precursor. More alkaline precursors produce the hydroxy-carbonate structures (abellaite, or its potassium analog, and hydrocerussite), while the less alkaline precursors produce the simple carbonate structure (cerussite).

View Article and Find Full Text PDF

Monodisperse, Highly Spherical, Single Crystalline Au Nanospheres for Uniform and Reproducible Hot Spots in Surface-Enhanced Raman Scattering at the Single-Particle Level.

Nano Lett

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Physical Science and Technology, and College of Materials, Xiamen University, Xiamen 361005, China.

Hot spots can generate intense local electromagnetic (EM) fields, thereby boosting diverse innovative applications. However, these applications may face challenges due to their subtle structural changes that can significantly impact their EM field strength. Herein, we report a large-scale synthesis of monodisperse, highly spherical, single crystalline (SC) Au nanospheres (Au NSs) with tunable sizes ranging from 38 to 92 nm for constructing uniform and reproducible hot spots with a nanosphere-on-mirror (NSoM) configuration.

View Article and Find Full Text PDF

Epitaxy of rare-earth nitride films are crucial for studying their physical properties and offer significant potential for applications in spintronics and optoelectronics. However, synthesizing single-crystalline LuN presents significant challenges, leading to a limited understanding of its properties. In this study, we successfully achieved the epitaxial growth of (001)-oriented LuN films on YAlO (110) substrates by reactive magnetron sputtering epitaxy.

View Article and Find Full Text PDF

Carbon-Oxygen Radical Assisted Growth of Defect-Free Graphene Films Using Low-Temperature Chemical Vapor Deposition.

Small

November 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.

Low-temperature chemical vapor deposition growth of graphene films is a long-term pursuit in the graphene synthesis field because of the low energy consumption, short heating-cooling process and low wrinkle density of as-obtained films. However, insufficient energy supply at low temperature (below 850 °C) usually leads to the difficulty in carbon source dissociation, graphene growth, and defect healing. Herein, a Carbon-Oxygen (C─O) radical assisted strategy is proposed for low-temperature growth of defect-free, wrinkle-free, and single-crystalline graphene films by using methanol precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!