The expression of β1-integrin on human adipose-derived stem cells, differentiating toward a chondrogenic lineage, is hypothesized to decrease when cells are grown under in vivo-like environments due to sufficient extracellular matrix (ECM) buildup in the engineered tissues. The opposite is true when cells are grown in static cultures such as in pellet or micromass. To probe β1-integrin distribution on cellular surfaces, atomic force microscopy cantilevers modified with anti-β1-integrin antibodies were used. Specific antibody-antigen adhesion forces were identified and indicated the locations of β1-integrins on cells. ECM properties were assessed by estimating the Young's modulus of the matrix. Specific single antibody-antigen interactions averaged 78 ± 10 pN with multiple bindings occurring at approximate multiples of 78 pN. The author's results show that upregulated β1-integrin expression coincided with a less robust ECM as assessed by mechanical properties of tissues. In micromass and pellet cultures, transforming growth factor β3(TGF-β3) elicited a decrease in Young's modulus by 3.7- and 4.4-fold while eliciting an increase in β1-integrin count by 1.1- and 1.3-fold, respectively. β1-integrin counts on cells grown in the presence of TGF-β3 with oscillating hydrostatic pressure decreased by a 1.1-fold while the Young's modulus increased by a 1.9-fold. Collectively, our results suggest that cells in insufficiently robust ECM express more integrin perhaps to facilitate cell-ECM adhesion and compensate for a looser less robust ECM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841801 | PMC |
http://dx.doi.org/10.1116/1.4947049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!