In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4944758 | DOI Listing |
J Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
Low-frequency transducers are considerably smaller than the wavelength. When multiple low-frequency transducers are closely packed, they couple with the surrounding water and form a transducer-water-transducer coupling structure called multi-element coupled transducers (MCT). This study presents a theoretical model of the MCT based on radiation and mutual radiation theory and analyzes it under multiple resonance frequencies and vibration modes.
View Article and Find Full Text PDFWe propose and demonstrate a photonic compressive sensing (PCS) scheme for microwave signals using optical pulse random mixing, significantly enhancing both the compression ratio and operating frequency range. Unlike continuous-wave laser-based PCS systems, our approach mitigates the non-ideal characteristics of the pseudo-random binary sequence (PRBS), such as sloped edges and amplitude jitters, resulting in a more ideal compression process. Additionally, the high harmonic components of the optical pulses further facilitate wideband downconversion, improving the system's operating frequency range.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Sci Rep
December 2024
Department of Physics, University of Trento, Via Sommarive 14, 38123, Povo (TN), Italy.
It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.
View Article and Find Full Text PDFJ Sleep Res
December 2024
Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands.
Traditionally categorized as a uniform sleep phase, rapid eye movement sleep exhibits substantial heterogeneity with its phasic and tonic constituents showing marked differences regarding many characteristics. Here, we investigate how tonic and phasic states differ with respect to aperiodic neural activity, a marker of arousal and sleep. Rapid eye movement sleep heterogeneity was assessed using either binary phasic-tonic (n = 97) or continuous (in 60/97 participants) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!