A leaky integrate-and-fire model with adaptation for the generation of a spike train.

Math Biosci Eng

Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Universita di Napoli Federico II, Via Cintia, 80126 Napoli, Italy.

Published: June 2016

A model is proposed to describe the spike-frequency adaptation observed in many neuronal systems. We assume that adaptation is mainly due to a calcium-activated potassium current, and we consider two coupled stochastic differential equations for which an analytical approach combined with simulation techniques and numerical methods allow to obtain both qualitative and quantitative results about asymptotic mean firing rate, mean calcium concentration and the firing probability density. A related algorithm, based on the Hazard Rate Method, is also devised and described.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2016002DOI Listing

Publication Analysis

Top Keywords

leaky integrate-and-fire
4
integrate-and-fire model
4
model adaptation
4
adaptation generation
4
generation spike
4
spike train
4
train model
4
model proposed
4
proposed describe
4
describe spike-frequency
4

Similar Publications

This study introduces a novel neuromechanical model employing a detailed spiking neural network to explore the role of axial proprioceptive sensory feedback, namely stretch feedback, in salamander locomotion. Unlike previous studies that often oversimplified the dynamics of the locomotor networks, our model includes detailed simulations of the classes of neurons that are considered responsible for generating movement patterns. The locomotor circuits, modeled as a spiking neural network of adaptive leaky integrate-and-fire neurons, are coupled to a three-dimensional mechanical model of a salamander with realistic physical parameters and simulated muscles.

View Article and Find Full Text PDF

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.

View Article and Find Full Text PDF

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network.

View Article and Find Full Text PDF

From light sensing to adaptive learning: hafnium diselenide reconfigurable memcapacitive devices in neuromorphic computing.

Light Sci Appl

January 2025

Electrical and Computer Engineering Program, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior, dynamic responses, and energy efficiency characteristics. Although charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity, replicating the key functionality of neurons-integrating diverse presynaptic inputs to fire electrical impulses-has remained challenging. In this study, we developed reconfigurable metal-oxide-semiconductor capacitors (MOSCaps) based on hafnium diselenide (HfSe).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!