Up-regulation of anti-apoptotic factors is a critical mechanism of cancer cell resistance and often counteracts the success of chemotherapeutic treatment. Herein, we identified the cancer-associated RNA-binding protein La as novel factor contributing to cisplatin resistance. Our data demonstrate that depletion of the RNA-binding protein La in head and neck squamous cell carcinoma cells (HNSCC) increases the sensitivity toward cisplatin-induced cell death paralleled by reduced expression of the anti-apoptotic factor Bcl2. Furthermore, it is shown that transient expression of Bcl2 in La-depleted cells protects against cisplatin-induced cell death. By dissecting the underlying mechanism we report herein, that the La protein is required for Bcl2 protein synthesis in cisplatin-treated cells. The RNA chaperone La binds in close proximity to the authentic translation start site and unwinds a secondary structure embedding the authentic AUG. Altogether, our data support a novel model, whereby cancer-associated La protein contributes to cisplatin resistance by stimulating the translation of anti-apoptotic factor Bcl2 in HNSCC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045424PMC
http://dx.doi.org/10.18632/oncotarget.8819DOI Listing

Publication Analysis

Top Keywords

cisplatin-induced cell
12
cell death
12
anti-apoptotic factor
12
factor bcl2
12
protein synthesis
8
rna-binding protein
8
cisplatin resistance
8
protein
7
cell
5
bcl2
5

Similar Publications

PAR2 promotes malignancy in lung adenocarcinoma.

Am J Transl Res

December 2024

Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University Tianjin 300070, China.

Proteinase-activated receptor-2 (PAR2) is closely linked to tumor malignancy, but its biological role in cancer remains underexplored. In this study, we assessed PAR2 expression in lung adenocarcinoma (LUAD) and normal lung tissues, analyzed associations between clinicopathological features and survival rates, and confirmed that PAR2 promotes apoptosis resistance and reduces cisplatin-induced cytotoxicity in lung cancer cells. Using TCGA datasets, western blotting, qPCR, and immunohistochemistry (IHC), we observed a significant increase in PAR2 levels in LUAD samples compared to normal tissues (P<0.

View Article and Find Full Text PDF

Background: Cisplatin is an anti-cancer drug used to treat a plethora of solid tumors. However, it is associated with dose dependent nephrotoxicity limiting its use as anticancer agent.

Objective: The current study aimed to investigate the nephroprotective effect of native Lebanese Cannabis sativa in both in vitro and in vivo mice model of cisplatin-induced nephrotoxicity.

View Article and Find Full Text PDF

Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms.

Methods: A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSC).

View Article and Find Full Text PDF

Harnessing HDAC-targeted oleanolic acid derivatives for combined anti-cancer and hepatoprotective effects.

Int J Biol Macromol

January 2025

State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China. Electronic address:

The development of anti-tumor drugs with hepatoprotective properties has always been highly valued due to their dual capabilities of safeguarding the liver and combating tumors. Moreover, when used in conjunction with specific chemotherapy drugs, they can enhance the efficacy of cancer treatment while simultaneously reducing liver damage caused by chemotherapeutic agents. Our research focused on oleanolic acid (OA), a natural compound known for its liver-protective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!