Antimicrobial peptides (AMPs) are ubiquitous components of the insect innate immune system. The model insect Galleria mellonella has at least 18 AMPs, some of which are still uncharacterized in terms of antimicrobial activity. To determine why G. mellonella secretes a repertoire of distinct AMPs following an immune challenge, we selected three different AMPs: cecropin A (CecA), gallerimycin and cobatoxin. We found that cobatoxin was active against Micrococcus luteus at a minimum inhibitory concentration (MIC) of 120 μm, but at 60 μm when co-presented with 4 μm CecA. In contrast, the MIC of gallerimycin presented alone was 60 μm and the co-presentation of CecA did not affect this value. Cobatoxin and gallerimycin were both inactive against Escherichia coli at physiological concentrations, however gallerimycin could potentiate the sublethal dose of CecA (0.25 μm) at a concentration of 30 μm resulting in 100% lethality. The ability of gallerimycin to potentiate the CecA was investigated by flow cytometry, revealing that 30 μm gallerimycin sensitized E. coli cells by inducing membrane depolarization, which intensified the otherwise negligible effects of 0.25 μm CecA. We therefore conclude that G. mellonella maximizes the potential of its innate immune response by the co-presentation of different AMPs that become more effective at lower concentrations when presented simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/hsz-2016-0157 | DOI Listing |
Sci Adv
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity.
View Article and Find Full Text PDFCell Rep
January 2025
Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore. Electronic address:
Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!