Fe(II) Spin Transition Materials Including an Amino-Ester 1,2,4-Triazole Derivative, Operating at, below, and above Room Temperature.

Inorg Chem

Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.

Published: May 2016

A new family of one-dimensional Fe(II) 1,2,4-triazole spin transition coordination polymers for which a modification of anion and crystallization solvent can tune the switching temperature over a wide range, including the room temperature region, is reported. This series of materials was prepared as powders after reaction of ethyl-4H-1,2,4-triazol-4-yl-acetate (αEtGlytrz) with an iron salt from a MeOH/H2O medium affording: [Fe(αEtGlytrz)3](ClO4)2 (1); [Fe(αEtGlytrz)3](ClO4)2·CH3OH (2); [Fe(αEtGlytrz)3](NO3)2·H2O (3); [Fe(αEtGlytrz)3](NO3)2 (4); [Fe(αEtGlytrz)3](BF4)2·0.5H2O (5); [Fe(αEtGlytrz)3](BF4)2 (6); and [Fe(αEtGlytrz)3](CF3SO3)2·2H2O (7). Their spin transition properties were investigated by (57)Fe Mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and differential scanning calorimetry (DSC). The temperature dependence of the high-spin molar fraction derived from (57)Fe Mössbauer spectroscopy in 1 reveals an abrupt single step transition between low-spin and high-spin states with a hysteresis loop of width 5 K (Tc(↑) = 296 K and Tc(↓) = 291 K). The properties drastically change with modification of anion and/or lattice solvent. The transition temperatures, deduced by SQUID magnetometry, shift to Tc(↑) = 273 K and Tc(↓) = 263 K for (2), Tc(↑) = 353 K and Tc(↓) = 333 K for (3), Tc(↑) = 338 K and Tc(↓) = 278 K for (4), T(↑) = 320 K and T(↓) = 305 K for (5), Tc(↑) = 106 K and Tc(↓) = 92 K for (6), and T(↑) = 325 K and T(↓) = 322 K for (7). Annealing experiments of 3 lead to a change of the morphology, texture, and magnetic properties of the sample. A dehydration/rehydration process associated with a spin state change was analyzed by a mean-field macroscopic master equation using a two-level Hamiltonian Ising-like model for 3. A new structural-property relationship was also identified for this series of materials [Fe(αEtGlytrz)3](anion)2·nSolvent based on Mössbauer and DSC measurements. The entropy gap associated with the spin transition and the volume of the inserted counteranion shows a linear trend, with decrease in entropy with increasing the size of the counteranion. The first materials of this substance class to display a complete spin transition in both spin states are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b00015DOI Listing

Publication Analysis

Top Keywords

spin transition
20
room temperature
8
modification anion
8
series materials
8
squid magnetometry
8
associated spin
8
transition
7
spin
6
tc↑
5
tc↓
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!