We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.143901 | DOI Listing |
Lancet Diabetes Endocrinol
August 2024
Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia. Electronic address:
J Colloid Interface Sci
October 2024
Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université libre de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium. Electronic address:
Over the past decades, advances in lipid nanotechnology have shown that self-assembled lipid structures providing ease of preparation, chemical stability, and biocompatibility represent a landmark on the development of multidisciplinary technologies. Lipid nanotubes (LNTs) are a unique class of lipid self-assembled structures, bearing unique properties such as high-aspect ratio, tunable diameter size, and precise molecular recognition. They can be obtained either by the action of external factors to already formed vesicles or spontaneously, the latter depending strongly on subtle molecular features.
View Article and Find Full Text PDFWe numerically and experimentally investigate the asymmetrically phase-detuned dual pumping of a passive inhomogeneous fiber ring cavity. This configuration originates from the fine control of frequency mismatch between the frequency spacing of the bichromatic pump and the free spectral range of the cavity. Multicomb states at offset frequencies can be selectively generated by means of the mismatch parameter and the coexistence of Turing and Faraday instabilities.
View Article and Find Full Text PDFWe experimentally investigate the round-trip-to-round-trip dynamics of the modulation instability spectrum in a passive fiber-ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique, we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavity not only differ by their characteristic frequency but also by their dynamical behavior.
View Article and Find Full Text PDFNat Commun
August 2016
Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK.
Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!