Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.141602 | DOI Listing |
Phys Rev Lett
December 2024
Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.
Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain.
We address the precise determination of the phase diagram of magic angle twisted bilayer graphene under hydrostatic pressure within a self-consistent Hartree-Fock method in real space, including all the remote bands of the system. We further present a novel algorithm that maps the full real-space density matrix to a 4×4 density matrix based on a SU(4) symmetry of sublattice and valley degrees of freedom. We find a quantum critical point between a nematic and a Kekulé phase, and show also that our microscopic approach displays a strong particle-hole asymmetry in the weak coupling regime.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.
The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry , University of California, Berkeley, California 94720, United States.
ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Physics, Sichuan University, Chengdu, 610065, China.
Magnetic semiconductors with spin-polarized non-metallic atoms are usually overlooked in applications because of their poor performances in magnetic moments and under critical temperatures. Herein, magnetic characteristics of 2D pentagon-based XN (X = B, Al, and Ga) are revealed based on first-principles calculations. It was proven that XN structures are antiferromagnetic semiconductors with bandgaps of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!