In order to maximize the biogas production from thickened waste activated sludge (TWAS), co-digestion of TWAS and rice straw (RS) was studied and the application of thermal/thermo-alkaline and NaOH/H2O2 to TWAS and RS, respectively, was evaluated. The batch experiments were conducted at three different TWAS/RS (volume basis) ratios of 1:3, 1:1 and 3:1, respectively. Furthermore, the modified Gompertz model was introduced to predict the biogas yield and evaluate the kinetic parameters. The highest biogas production (409.2 L/kg VSadded) was achieved from co-digestion of TWASthermo-alkaline and RSNaOH at mixing ratio of 1:1, which is greater by 42.2% and 5.9% than that of digesting TWASthermo-alkaline, and RSNaOH alone, respectively. The highest VS removal rate was obtained from the co-digestion of TWASthermo-alkaline and RSNaOH at mixing ratio of 1:3, which is greater by 55.8% and 14.0% than those of mono-digestion. The modified Gompertz model (R(2): 0.993-0.998 and 0.993-0.999 for mono- and co-digestions, respectively) showed a good fit to the experimental results and the estimated parameters indicating that the pretreatments and co-digestion of substrates markedly improved the biogas production rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2016.04.028 | DOI Listing |
Bull Environ Contam Toxicol
January 2025
Sichuan Academy of Eco-Environmental Sciences, Chengdu, 610041, China.
The widespread application of swine-farming wastewater to soil and water is increasingly contributing to heavy metal contamination, posing significant environmental risks. This study investigated the concentrations of eight heavy metals in swine-farming wastewater following different treatment processes, and assessed their ecological risks in Sichuan Province, China. The findings revealed that zinc, copper and nickel exhibited the highest concentrations, potentially causing heavy or strong contamination levels and leading to heavy or slight ecological risks.
View Article and Find Full Text PDFBioresour Technol
January 2025
Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia.
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, L.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Biomass and Oil Palm Research Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand.
In this comprehensive investigation, the sustainable production and utilization of gas separation membranes derived from coconut water (CW) waste was investigated. The research focuses on the synthesis of bacterial cellulose (BC) and cellulose acetate (CA) membranes from CW, followed by a thorough analysis of their characteristics, including morphology, ATR-FTIR spectroscopy, tensile strength, and chemical composition. The study rigorously evaluates membrane performance, with particular emphasis on CO/CH selectivity under various operational conditions, including pressure, membrane thickness, and number of stages.
View Article and Find Full Text PDFMolecules
January 2025
Orlen Unicre a.s., Revolucňí 1521/84, 400 01 Ústí nad Labem, Czech Republic.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!