Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thousands of chemicals are directly added to or come in contact with food, many of which have undergone little to no toxicological evaluation. The landscape of the food-relevant chemical universe was evaluated using cheminformatics, and subsequently the bioactivity of food-relevant chemicals across the publicly available ToxCast highthroughput screening program was assessed. In total, 8659 food-relevant chemicals were compiled including direct food additives, food contact substances, and pesticides. Of these food-relevant chemicals, 4719 had curated structure definition files amenable to defining chemical fingerprints, which were used to cluster chemicals using a selforganizing map approach. Pesticides, and direct food additives clustered apart from one another with food contact substances generally in between, supporting that these categories not only reflect different uses but also distinct chemistries. Subsequently, 1530 food-relevant chemicals were identified in ToxCast comprising 616 direct food additives, 371 food contact substances, and 543 pesticides. Bioactivity across ToxCast was filtered for cytotoxicity to identify selective chemical effects. Initiating analyses from strictly chemical-based methodology or bioactivity/cytotoxicity-driven evaluation presents unbiased approaches for prioritizing chemicals. Although bioactivity in vitro is not necessarily predictive of adverse effects in vivo, these data provide insight into chemical properties and cellular targets through which foodrelevant chemicals elicit bioactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2016.04.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!