We report on the temporal lasing dynamics of high quality ZnO nanowires using the time-resolved micro-photoluminescence technique. The temperature dependence of the lasing characteristics and of the corresponding decay constants demonstrate the formation of an electron-hole plasma to be the underlying gain mechanism in the considered temperature range from 10 K to 300 K. We found that the temperature-dependent emission onset-time ([Formula: see text]) strongly depends on the excitation power and becomes smallest in the lasing regime, with values below 5 ps. Furthermore, the observed red shift of the dominating lasing modes in time is qualitatively discussed in terms of the carrier density induced change of the refractive index dispersion after the excitation laser pulse. This theory is supported by extending an existing model for the calculation of the carrier density dependent complex refractive index for different temperatures. This model coincides with the experimental observations and reliably describes the evolution of the refractive index after the excitation laser pulse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/22/225702 | DOI Listing |
Background: Familial hyperlipidemia (familial hypercholesterolemia, FH) is an autosomal genetic disorder. It includes type heterozygous familial hyperlipidemia (heterozygous familial hypercholesterolemia). HeFH is mainly caused by mutations in the LDLR, APOB, and PCSK9 genes and is characterized by elevated plasma low-density lipoprotein cholesterol levels.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong Island 000000, Hong Kong SAR, China.
Methanol (ME) is a liquid hydrogen carrier, ideal for on-site-on-demand H generation, avoiding its costly and risky distribution issues, but this "ME-to-H" electric conversion suffers from high voltage (energy consumption) and competitive oxygen evolution reaction. Herein, we demonstrate that a synergistic cofunctional PtPd/(Ni,Co)(OH) catalyst with Pt single atoms (Pt) and Pd nanoclusters (Pd) anchored on OH-vacancy(V)-rich (Ni,Co)(OH) nanoparticles create synergistic triadic active sites, allowing for methanol-enhanced low-voltage H generation. For MOR, OH* is preferentially adsorbed on Pd and then interacts with the intermediates (such as *CHO or *CHOOH) adsorbed favorably on neighboring Pt with the assistance of hydrogen bonding from the surface hydrogen of (Ni,Co)(OH).
View Article and Find Full Text PDFNano Lett
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Ultrafast near-field optical nanoscopy has emerged as a powerful platform to characterize low-dimensional materials. While analytical and numerical models have been established to account for photoexcited carrier dynamics, quantitative evaluation of the associated pulsed laser heating remains elusive. Here, we decouple the photocarrier density and temperature increase in near-field nanoscopy by integrating the two-temperature model (TTM) with finite-difference time-domain (FDTD) simulations.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Physics, University of Ulsan, Ulsan, 44610, Republic of Korea.
The anisotropic properties of materials profoundly influence their electronic, magnetic, optical, and mechanical behaviors and are critical for a wide range of applications. In this study, the anisotropic characteristics of Ni-based van der Waals materials, specifically NiTe and its alloy NiTeSe, utilizing a combination of comprehensive scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and density functional theory (DFT) calculations, are explored. Unlike 1T-NiTe, which exhibits trigonal in-plane symmetry, the substitution of Te with Se in NiTe (resulting in the NiTeSe alloy) induces a pronounced in-plane anisotropy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!