The neural cell adhesion molecule (NCAM) is involved in developmental processes and age-associated cognitive decline; however, little is known concerning the effects of NCAM in the visual system during aging. Using anatomical, electrophysiological, and behavioral assays, we analyzed age-related changes in visual function of NCAM deficient (-/-) and wild-type mice. Anatomical analyses indicated that aging NCAM -/- mice had fewer retinal ganglion cells, thinner retinas, and fewer photoreceptor cell layers than age-matched controls. Electroretinogram testing of retinal function in young adult NCAM -/- mice showed a 2-fold increase in a- and b-wave amplitude compared with wild-type mice, but the retinal activity dropped dramatically to control levels when the animals reached 10 months. In behavioral tasks, NCAM -/- mice had no visual pattern discrimination ability and showed premature loss of vision as they aged. Together, these findings demonstrate that NCAM plays significant roles in the adult visual system in establishing normal retinal anatomy, physiology and function, and in maintaining vision during aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2016.02.003 | DOI Listing |
STAR Protoc
January 2025
Department of Neurosurgery, the First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurosurgery, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou 646000, China. Electronic address:
Under pathological conditions, astrocytes can transfer mitochondria to neurons, where they exert neuroprotective effects. In this context, we present a protocol for capturing astrocytic mitochondria in neurons of adult mice using a two-photon microscope. We describe an approach for constructing a mouse model with combined labeling of astrocytic mitochondria and neurons.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Orthopaedic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFMol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!