Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (>48h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2016.04.011 | DOI Listing |
Curr Microbiol
November 2024
Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
Microb Cell Fact
October 2024
Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
Background: Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression.
View Article and Find Full Text PDFJ Mol Biol
November 2024
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan. Electronic address:
A nucleoid protein Cren7 compacts DNA, contributing to the living of Crenarchaeum in high temperature environment. In this study, we investigated the dynamic behavior of Cren7 on DNA and its functional relation using single-molecule fluorescence microscopy. We found two mobility modes of Cren7, sliding along DNA and pausing on it, and the rapid dissociation kinetics from DNA.
View Article and Find Full Text PDFNat Commun
August 2024
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
Anat Histol Embryol
September 2024
Department of Biomedical Sciences, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.
Dromedary camels can survive and reproduce in desert areas. The unique anatomical structure of the kidney enables the camel to prevent water loss. The present study aimed to investigate the ultrastructure of the peroxisomes in the normal kidney of the adult dromedary camel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!