Ion selectivity of graphene nanopores.

Nat Commun

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: April 2016

As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844701PMC
http://dx.doi.org/10.1038/ncomms11408DOI Listing

Publication Analysis

Top Keywords

graphene nanopores
8
ion selectivity
4
graphene
4
selectivity graphene
4
nanopores population
4
population growth
4
growth continues
4
continues outpace
4
outpace development
4
development water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!