Black phosphorus (BP) has emerged as a promising two-dimensional (2D) material for next generation transistor applications due to its superior carrier transport properties. Among other issues, achieving reduced subthreshold swing and enhanced hole mobility simultaneously remains a challenge which requires careful optimization of the BP/gate oxide interface. Here, we report the realization of high performance BP transistors integrated with HfO2 high-k gate dielectric using a low temperature CMOS process. The fabricated devices were shown to demonstrate a near ideal subthreshold swing (SS) of ~69 mV/dec and a room temperature hole mobility of exceeding >400 cm(2)/Vs. These figure-of-merits are benchmarked to be the best-of-its-kind, which outperform previously reported BP transistors realized on traditional SiO2 gate dielectric. X-ray photoelectron spectroscopy (XPS) analysis further reveals the evidence of a more chemically stable BP when formed on HfO2 high-k as opposed to SiO2, which gives rise to a better interface quality that accounts for the SS and hole mobility improvement. These results unveil the potential of black phosphorus as an emerging channel material for future nanoelectronic device applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840359 | PMC |
http://dx.doi.org/10.1038/srep24920 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Tsinghua University, Department of Chemistry, 1 Qinghuayuan, Haidian District, 100084, Beijing, CHINA.
The in-depth research on the charge transport properties of BN-embedded polycyclic aromatic hydrocarbons (BN-PAHs) still lags far behind studies of their emitting properties. Herein, we report the successfully synthesis of novel ladder-type BN-PAHs (BCNL1 and BCNL2) featuring a highly ordered BC3N2 acene unit, achieved via a nitrogen-directed tandem C-H borylation. Single-crystal X-ray diffraction analysis unambiguously revealed their unique and compact herringbone packing structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Two-dimensional (2D) β-TeO has gained attention as a promising material for optoelectronic and power device applications, thanks to its transparency and high hole mobility. However, the mechanisms driving its -type conductivity and dopability remain elusive. In this study, we investigate the intrinsic and extrinsic point defects in monolayer and bilayer β-TeO, the latter of which has been experimentally synthesized, using the Heyd-Scuseria-Ernzerhof (HSE) + D3 hybrid functional.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Physics and Centre for Processable Electronics, Imperial College London, SW7 2AZ, London, United Kingdom.
Conjugated polymers (CPs) with polar side chains can conduct electronic and ionic charges simultaneously, making them promising for bioelectronics, electrocatalysis and energy storage. Recent work showed that adding alkyl spacers between CP backbones and polar side chains improved electronic charge carrier mobility, reduced swelling and enhanced stability, without compromising ion transport. However, how alkyl spacers impact polymer backbone conformation and, subsequently, electronic properties remain unclear.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!