Objective: We describe the setup and use of different 3-dimensional (3-D) recording modalities (macroscopic, endoscopic, and microsurgical) in our laboratory and operating room and discuss their implications in neurosurgical research and didactics. We also highlight the utility of 3-D images in providing depth perception and discernment of structures compared with 2-dimensional (2-D) images.
Methods: The technical details for equipment and laboratory setup for obtaining 3-D images were described. The stereoscopic pair of images was obtained using a modified "shoot-shift-shoot" method and later converged to a 3-D image. For microsurgical procedures, 3-D images were obtained using an integrated 3-D video camera coupled to the surgical microscope in both the laboratory and the operating room. Illustrative cases were used to compare 2-D and 3-D images.
Results: Side-by-side comparisons of 2-D and 3-D images obtained using all modalities revealed that 3-D imaging was superior to 2-D imaging in providing depth perception and structure identification.
Conclusions: This is the first report in the literature of the methodology for obtaining 3-D endoscopic endonasal images using the 2-D endoscope. The use of 3-D imaging is invaluable in neurosurgical research and education, as it provides immediate depth perception (third dimension), allowing efficient understanding of key spatial relationships. Integration of 3-D imaging in neurosurgical residency programs may increase learning efficiency and shorten learning curves. However, use of 3-D imaging should not replace direct hands-on practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2016.04.023 | DOI Listing |
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.
Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.
Multimed Man Cardiothorac Surg
January 2025
New Cross Hospital, Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom.
Robotic-assisted thoracic surgery has become increasingly utilized in recent years. Complex lung cancer resection surgery can be performed using a robotic approach. It facilitates 3-dimentional visualization of structures, enhanced manipulation of tissues and precise movements.
View Article and Find Full Text PDFMultimed Man Cardiothorac Surg
January 2025
Respiratory Disease Center, Kyoto Katsura Hospital, Kyoto, Japan.
The plane running between two adjacent pulmonary segments consists of a very thin layer of connective tissue through which the pulmonary vein also runs. To perform an anatomically correct segmentectomy, this segmental plane needs to be divided. Before the operation, the locations of vessels and bronchi are confirmed by three-dimensional computed tomography.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
Background: Dextro-transposition of the great arteries (dTGA) stands out as a prevalent cyanotic congenital heart defect (CHD), characterized by an intricate reversal in the arrangement of the major arteries. In the past, several surgical procedures have been used to treat dTGA, including the atrial switch. Although the method is no longer used, survivors of the procedure still living among us.
View Article and Find Full Text PDFJ Neuroimaging
January 2025
Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
Background And Purpose: Tinnitus is a condition in which individuals perceive sounds, such as ringing or buzzing, without any external source. Although the exact cause is not fully understood, recent studies have indicated the involvement of nonauditory brain structures, including the limbic system. We aimed to compare the volumes of specific brain structures between patients with tinnitus and controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!