Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.

Biochim Biophys Acta

National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Published: July 2016

Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). Genetic suppression of S6K1 caused pale yellow-green leaves, defective thylakoid grana architecture. S6K1 directly interacts with Raptor2, a core component in TOR signaling, and S6K1 activity is regulated by Raptor2 and TOR. Plants with suppressed Raptor2 expression or reduced TOR activity by inhibitors mimicked the S6K1-deficient phenotype. A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2016.04.009DOI Listing

Publication Analysis

Top Keywords

thylakoid grana
12
ribosomal protein
8
thylakoid membrane
8
pale yellow-green
8
yellow-green leaves
8
grana architecture
8
thylakoid
6
protein kinase1
4
kinase1 coordinates
4
coordinates tor-raptor2
4

Similar Publications

The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated.

View Article and Find Full Text PDF

Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus and shade tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ).

View Article and Find Full Text PDF

Pyrenoid-based CO-concentrating mechanisms (pCCMs) turbocharge photosynthesis by saturating CO around Rubisco. Hornworts are the only land plants with a pCCM. Owing to their closer relationship to crops, hornworts could offer greater translational potential than the green alga Chlamydomonas, the traditional model for studying pCCMs.

View Article and Find Full Text PDF

Targeting signals required for protein sorting to sub-chloroplast compartments.

Plant Cell Rep

December 2024

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.

Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.

View Article and Find Full Text PDF

Toxicity of microplastics and nano-plastics to coral-symbiotic alga (Dinophyceae Symbiodinium): Evidence from alga physiology, ultrastructure, OJIP kinetics and multi-omics.

Water Res

December 2024

School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Analyzing and Testing Center, Guangdong Ocean University, Zhanjiang, 524088, China; Analytical and Testing Center for Ocean in Western of Guangdong Province, Guangdong Provincial Observation and Research Station for Tropical Ocean Environment in Western Coastal Water, Guangdong Ocean University, Zhanjiang, 524088, China. Electronic address:

Corals are representative of typical symbiotic organisms. The coral-algal (Symbiodinium spp.) symbiosis drives the productivity of entire coral reefs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!