Background: Uncoordinated cellular proliferation and dysregulated angiogenesis in solid tumors are coupled with inadequate tissue, blood, and lymphatic vascularization. Consequently, tumors are often characterized by hypoxic regions with limited access to vascular-borne substances. In particular, systemically administered nanoparticles (NPs) targeting tumor cells and relying on vascular access to reach tumor tissue can suffer from limited therapeutic efficacy due to inhomogeneous intra-tumor distribution and insufficient cellular internalization of NPs. To circumvent these challenges, NP surfaces can be modified to facilitate tumor interstitial transport and cellular uptake.
Results: We create poly(lactic-co-glycolic) acid NPs modified with MPG, polyethylene glycol (PEG), MPG/PEG, and Vimentin (VIM), and evaluate their cellular uptake in 2D (monolayer) cell culture of human cervical carcinoma (HeLa). We compare NP performance by evaluating uptake by non-cancerous vaginal (VK2) cells. We further assess NP interstitial transport in hypo-vascularized lesions by evaluating the effect of the various modifications on NP penetration in 3D cell culture of the HeLa cells. Results show that after 24 h incubation with HeLa cells in monolayer, MPG, MPG/PEG, PEG, and VIM NPs were internalized at 66×, 24×, 30×, and 15× that of unmodified NPs, respectively. In contrast, incubation with VK2 cells in monolayer showed that MPG , MPG/PEG , PEG , and VIM NPs internalized at 6.3×, 4.3×, 12.4×, and 3.0× that of unmodified NPs, respectively. Uptake was significantly enhanced in tumorigenic vs. normal cells, with internalization of MPG NPs by HeLa cells being twice that of PEG NPs by VK2 cells. After 24 h incubation in HeLa 3D cell culture, MPG and MPG/PEGNPs were internalized 2× and 3× compared to PEG and VIM NPs, respectively. Whereas MPG NPs were internalized mostly in the cell culture periphery (1.2×, 1.4×, and 2.7× that of PEG, MPG/PEG, and VIM NPs, respectively), PEG NPs at 250 μm penetrated 2× farther into the tissue culture than MPG NPs. For all NP types, cellular internalization was severely hindered in 3D compared to monolayer.
Conclusions: Although MPG surface modification enhances internalization and uptake in hypo-vascularized cervical tissue culture, coating with PEG reduces this internalization while enhancing penetration. A delivery strategy combining NPs with either modification may balance cellular internalization vs. tissue penetration in hypo-vascularized cervical cancer lesions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840861 | PMC |
http://dx.doi.org/10.1186/s12951-016-0185-x | DOI Listing |
Nat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:
Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Hemoglobin, composed of α- and β-chains, is essential for oxygen transport and is key in diagnosing and treating gastrointestinal and blood disorders. It also aids in detecting blood contamination and estimating transfusion volumes. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China. Electronic address:
Invasive pulmonary aspergillosis (IPA), the most common fungal infection, is associated with high mortality of affected patients. Traditional diagnostic methods exhibit limited sensitivity and specificity, raising big challenges for precise management of the patients. There is thus an urgent need to find out a timely and accurate diagnostic method in clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!