Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Luminescent nanoparticles (NPs) are deposited onto two dimensional (2D) pre-strained TiO2 nanomembranes by spin-coating. After rolling up the 2D differentially strained TiO2 nanomembranes into 3D microtube structures, the NPs are embedded within the tube windings. The embedded NPs serve as a light source for optical whispering-gallery-mode resonances under laser excitation, and therefore allow the TiO2 microtube to work as an active microcavity operating in emission mode. The spectral range of resonant modes can be tuned from the visible to the near infrared by embedding the proper NPs in the TiO2 tube wall. Rolled-up TiO2 microcavities combined with luminescent NPs could offer interesting opportunities in a variety of research fields, such as bio- and nanophotonics, optoelectronics, and optofluidics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr08979d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!