Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.

ACS Appl Mater Interfaces

Departments of Chemistry, Physics, and Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.

Published: May 2016

AI Article Synopsis

  • Exfoliated nanosheets from Dion-Jacobson phase perovskites were created on fluorine-doped tin oxide and gold electrodes, allowing for detailed electrochemical analysis.
  • Electrochemical impedance spectra helped determine flat-band potentials (VFB) of the oxide semiconductors, showing a shift of -59 mV/pH within a pH range of 4-8.
  • Density functional theory revealed that changing A-site compositions affected band energies, while substituting Ta for Nb caused a downward shift in conduction band-edge potential.

Article Abstract

Exfoliated nanosheets derived from Dion-Jacobson phase layer perovskites (TBAxH1-xA2B3O10, A = Sr, Ca, B = Nb, Ta) were grown layer-by-layer on fluorine-doped tin oxide and gold electrode surfaces. Electrochemical impedance spectra (EIS) of the five-layer nanosheet films in contact with aqueous electrolyte solutions were analyzed by the Mott-Schottky method to obtain flat-band potentials (VFB) of the oxide semiconductors as a function of pH. Despite capacitive contributions from the electrode-solution interface, reliable values could be obtained from capacitance measurements over a limited potential range near VFB. The measured values of VFB shifted -59 mV/pH over the pH range of 4-8 and were in close agreement with the empirical correlation between conduction band-edge potentials and optical band gaps proposed by Matsumoto ( J. Solid State Chem. 1996, 126 (2), 227-234 ). Density functional theory calculations showed that A-site substitution influenced band energies by modulating the strength of A-O bonding, and that subsitution of Ta for Nb on B-sites resulted in a negative shift of the conduction band-edge potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b02901DOI Listing

Publication Analysis

Top Keywords

flat-band potentials
8
conduction band-edge
8
potentials molecularly
4
molecularly thin
4
thin metal
4
metal oxide
4
oxide nanosheets
4
nanosheets exfoliated
4
exfoliated nanosheets
4
nanosheets derived
4

Similar Publications

Metallic Electro-optic Effect in Gapped Bilayer Graphene.

Nano Lett

January 2025

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.

View Article and Find Full Text PDF

Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.

View Article and Find Full Text PDF

Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS.

Nano Lett

December 2024

State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China.

Two-dimensional 1T-TaS is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive.

View Article and Find Full Text PDF

Since the initial discovery of 2D van der Waals (vdW) materials, significant effort has been made to incorporate the three properties of magnetism, band structure topology, and strong electron correlations-to leverage emergent quantum phenomena and expand their potential applications. However, the discovery of a single vdW material that intrinsically hosts all three ingredients has remained an outstanding challenge. Here, the discovery of a Kondo-interacting topological antiferromagnet is reported in the vdW 5f electron system UOTe.

View Article and Find Full Text PDF

Optical moiré bound states in the continuum.

Nat Commun

October 2024

Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.

Trapping electromagnetic waves within the radiation continuum holds significant implications in the field of optical science and technology. Photonic bound states in the continuum (BICs) present a distinctive approach for achieving this functionality, offering potential applications in laser systems, sensing technologies, and other domains. However, the simultaneous achievement of high Q-factors, flat-band dispersions, and wide-angle responses in photonic BICs has not yet been reported, thereby impeding their practical performance due to laser direction deviation or sample disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!