Myasthenia gravis and amyotrophic lateral sclerosis: A pathogenic overlap.

Neuromuscul Disord

Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway. Electronic address:

Published: June 2016

The aim was to examine potential joint disease mechanisms for myasthenia gravis (MG) and amyotrophic lateral sclerosis (ALS) through the examination of long-term patient cohorts for comorbidity. Recent studies support early involvement of the neuromuscular junction in ALS patients with subsequent degeneration of motor neurons. Medical records at Haukeland University Hospital from 1987 to 2012 were examined for International Classification of Diseases diagnostic codes for MG and ALS. Sera were re-tested for antibodies to acetylcholine receptor, titin, MuSK and GM1. We report one patient with both MG and ALS, and another 3 patients with suggestive evidence of both conditions. This is far more than expected from prevalence and incidence figures in this area if the disorders were unrelated. Our data suggest that immunological mechanisms in the neuromuscular junction are relevant in ALS pathogenesis. Attention should be given to possible therapeutic targets in the neuromuscular junction and muscle in ALS patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2016.03.003DOI Listing

Publication Analysis

Top Keywords

neuromuscular junction
12
als patients
12
myasthenia gravis
8
gravis amyotrophic
8
amyotrophic lateral
8
lateral sclerosis
8
als
6
sclerosis pathogenic
4
pathogenic overlap
4
overlap aim
4

Similar Publications

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.

View Article and Find Full Text PDF

Background: Myasthenia gravis is an autoimmune neuromuscular disease primarily caused by autoantibodies against nicotinic acetylcholine receptors (AChRs) at the neuromuscular junction. However, extrathymic malignancies need to be considered in the elderly population.

Purpose: Although thymic malignancy is the most common tumour association, several extrathymic malignancies complicated with myasthenia gravis have been reported.

View Article and Find Full Text PDF

Background: Cancer cachexia represents a debilitating muscle wasting condition that is highly prevalent in gastrointestinal cancers, including pancreatic ductal adenocarcinoma (PDAC). Cachexia is estimated to contribute to ~30% of cancer-related deaths, with deterioration of respiratory muscles suspected to be a key contributor to cachexia-associated morbidity and mortality. In recent studies, we identified fibrotic remodelling of respiratory accessory muscles as a key feature of human PDAC cachexia.

View Article and Find Full Text PDF

Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!