Two-dimensional zeolite nanosheets that do not contain any organic structure-directing agents were prepared from a multilamellar MFI (ML-MFI) zeolite. ML-MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H2 SO4 and H2 O2 (piranha solution). The obtained OSDA-free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n-butane/isobutane selectivity of 5.4, with an n-butane permeance of 3.5×10(-7)  mol m(-2)  s(-1)  Pa(-1) (ca. 1000 GPU).

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201601135DOI Listing

Publication Analysis

Top Keywords

zeolite nanosheets
8
open-pore two-dimensional
4
two-dimensional mfi
4
mfi zeolite
4
nanosheets fabrication
4
fabrication hydrocarbon-isomer-selective
4
hydrocarbon-isomer-selective membranes
4
membranes porous
4
porous polymer
4
polymer supports
4

Similar Publications

Graphene oxide (GO)-based membranes have demonstrated great potential in water treatment. However, microdefects in the framework of GO membranes induced by the imperfect stacking of GO nanosheets undermine their size-sieving ability and structural stability in aqueous systems. This study proposes a targeted growth approach by growing zeolitic imidazolate framework-8 (ZIF-8) nanocrystals precisely to patch microdefects as well as to cross-link the porous graphene oxide (PGO) flakes coated on the outer surface of the hollow fiber (HF) alumina substrate (named the hybrid PGO/ZIF-8 membrane).

View Article and Find Full Text PDF

Developing cost-effective ruthenium (Ru)-based HER electrocatalysts as alternatives to commercial Pt/C is crucial for the advancement of proton exchange membrane water electrolysis (PEMWE). However, the strong hydrogen adsorption of Ru-based catalysts restricts its activity. Herein, a strategy is reported to tune the electronic structure and improve mass transfer by implanting Ru atoms onto the (002) facet of two-dimensional zeolitic imidazolate framework-67 (Ru@LZIF) to optimize the d-band center (ε) of Ru and the hydrogen spillover behavior.

View Article and Find Full Text PDF

MXene-encapsulated ZIF-8@Liposomes for NIR-enhanced photothermal therapy in hepatocellular carcinoma treatment: In vitro, in vivo, and in silico study.

Arch Biochem Biophys

December 2024

Center for Material Science, Zewail City of Science and Technology, 6th of October, 12578, Giza, Egypt; Faculty of Postgraduate Studies for Advanced Sciences, Material Science and Nanotechnology Department, (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.

Photothermal therapy (PTT) utilizes near-infrared (NIR) light to enhance localized, non-invasive cancer treatments and drug delivery systems (DDS). Combination chemotherapy with PTT (chemo-PTT) offers multiple therapeutic advantages, involving synergistic effects, reduced side effects, and decreased drug toxicity. In this study, 2D titanium carbide (TiCT) MXene nanosheets were encapsulated in a zeolitic imidazolate framework-8 (ZIF-8) to form (MX-ZIF-8) nanoparticles (NPs) for PTT applications.

View Article and Find Full Text PDF

Twinned Metal-Organic Framework Nanoplates for Hydrocarbon Separation Membranes.

Small Methods

November 2024

Department of Chemical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea.

Article Synopsis
  • Filler morphology control significantly improves gas separation in mixed matrix membranes (MMMs) through the design of a vertical transport channel utilizing crystal twinning in ZIF nanoplate.
  • Twinned ZIF-8 (TZIF-8) enhances propylene/propane separation when added to 6FDA-DAM polymer, achieving a propylene permeability of 40 Barrer and selectivity of 82.
  • The study indicates that the structure of the TZIF-8 provides effective pathways for desired gas molecules while creating barriers for undesired ones, outperforming previous MMMs and matching polycrystalline ZIF-8 membranes.
View Article and Find Full Text PDF

Synthesis of self-pillared pentasil zeolites without organic templates and seeds.

Nanoscale

November 2024

Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.

Self-pillared pentasil (SPP) zeolites have received considerable interest due to their distinctive intergrowth structure, while the precise process and mechanism for the formation of SPP zeolites remain obscure. Herein, SPP zeolites (ZSM-5) have been successfully synthesized by pre-aging an Al-rich gel without employing any organic templates or seeds for the first time. The as-synthesized SPP zeolites possess a notably high external surface area while the micropores for Ar adsorption are partially blocked by excess Na, which can be fully recovered by Mg or H exchange.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!