Metabolic changes in spikelets of wheat varieties FL62R1, Stettler, Muchmore and Sumai3 following Fusarium graminearum infection were explored using NMR analysis. Extensive 1D and 2D 1H NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. In addition, metabolic changes that are observed in all studied varieties as well as wheat variety specific changes have been determined and discussed. A new method for metabolite quantification from NMR data that automatically aligns spectra of standards and samples prior to quantification using multivariate linear regression optimization of spectra of assigned metabolites to samples' 1D spectra is described and utilized. Fusarium infection-induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839701 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153642 | PLOS |
Funct Integr Genomics
January 2025
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).
View Article and Find Full Text PDFWheat and barley serve as significant nutrient-rich staples that are extensively grown on a global scale, spanning over 219 million hectares. The annual combined global yield is 760.9 million tons, with Kazakhstan contributing 14.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway.
This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS Plant Science Research Laboratory, 1301N, Western Rd, Stillwater, OK 74075, USA.
Greenbug, , is one of the important cereal aphid pests of sorghum in the United States and other parts of the world. variety PI 607900 carries the resistance () gene that underlies plant resistance to greenbug biotype I (GBI). Now, the has been determined as the major gene conferring greenbug resistance based on the strong association of its presence with the resistance phenotype in sorghum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!