AI Article Synopsis

  • NSC745885 and NSC757963 are promising compounds tested against various cancer cell lines, showing significant activity specifically against cancer rather than normal cells, particularly with NSC757963 being effective against leukemia.
  • Both compounds inhibit the NF-κB pathway, evidenced by changes in the NF-κB p65 subunit distribution in treated cancer cells.
  • Additionally, NSC757963 demonstrates potent antimycobacterial activity against Mycobacterium tuberculosis, indicating potential use in clinical settings, along with favorable bioavailability and safety profiles.

Article Abstract

The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel. Activities of both compounds strongly correlated to expression of NFKB1 and CSNK2B genes, implying that they may inhibit the NF-κB pathway. Immunocytochemical microscopy of OVCAR-3 cells showed clear cytosolic accumulation of the NF-κB p65 subunit following treatment. Western blotting showed dose dependent inhibition of the nuclear expression of the NF-κB p65 subunit with subsequent accumulation in the cytosol following treatment. Docking experiments showed binding of both compounds to the NF-κB activator IKKβ subunit preventing its translocation to the nucleus. Collectively, these results confirm the ability of our compounds to inhibit the constitutively active NF-κB pathway of OVCAR-3 cells. Furthermore, COMPARE analysis indicated that the activity of NSC757963 is similar to the antituberculosis agent rifamycin SV, this was confirmed by testing the antimycobacterial activity of NSC757963 against Mycobacterium tuberculosis, results revealed potent activity suitable for use in clinical practice. Molecular properties and Lipinski's parameters predicted acceptable bioavailability properties with no indication of mutagenicity, tumorigenicity, irritability and reproductive effects. Oral absorption experiments using the human Caco-2 model showed high intestinal absorption of NSC745885 by passive transport mechanism with no intestinal efflux or active transport mechanisms. The unique molecular characterization as well as the illustrated anticancer spectra of activity and bioavailability properties warrant further development of our compounds and present a foundation brick in the pre-clinical investigations to implement such compounds in clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839570PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154278PLOS

Publication Analysis

Top Keywords

compounds
8
panel cancer
8
cancer cell
8
cell lines
8
nf-κb pathway
8
ovcar-3 cells
8
nf-κb p65
8
p65 subunit
8
activity nsc757963
8
clinical practice
8

Similar Publications

Non-targeted and targeted detection of hydrophilic compounds in fu brick tea: A study on samples from major Chinese production regions and different processing stages.

Food Chem

December 2024

National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients & Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Systematic research is still lacking on the content of hydrophilic compounds in Fu Brick Tea (FBT) from major Chinese production regions and their variation patterns during the processing of FBT. This study utilized optimized non-targeted (UHPLC-Q-Exactive Orbitrap-MS) and targeted (UHPLC-QqQ-MS) metabolomics to analyze 73 FBT samples from six regions of China and 30 samples from different stages of FBT processing. 573 and 74 hydrophilic compounds were respectively relatively and absolutely quantified for the first time.

View Article and Find Full Text PDF

Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair.

Biomater Adv

January 2025

Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China. Electronic address:

The current unavailability of efficient myocardial repair therapies constitutes a significant bottleneck in the clinical management of myocardial infarction (MI). Ginsenoside Rb1 (GRb1) has emerged as a compound with potential benefits in safeguarding myocardial cells and facilitating the regeneration of myocardial tissue. However, its efficacy in treating MI-related ischemic conditions is hampered by its low bioavailability and inadequate angiogenic properties.

View Article and Find Full Text PDF

Effects of storage durations on flavour and bacterial communities in Liupao tea.

Food Chem

December 2024

Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.

Long-term storage of Liupao tea is conducive to improving its flavour and commercial value. Although bacterial communities influence Liupao tea flavour, their impact during storage remains unclear. The aroma compounds and bacterial communities were determined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Illumina Nova6000 analysis.

View Article and Find Full Text PDF

Integration of untargeted lipidomics and targeted metabolomics revealed the mechanism of flavor formation in lightly cured sea bass driven via salt.

Food Chem

December 2024

School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Salt enhances flavor and salinity in Chinese curing; however, excessive use can pose health risks, while reducing NaCl may harm taste. This study utilized targeted and untargeted metabolomics to investigate the intrinsic molecular mechanisms that drive flavor formation in cured sea bass subjected to salt. Glycine, succinic acid, lactic acid and uridine significantly contributed to the taste profile of the cured sea bass.

View Article and Find Full Text PDF

The effect of dehulling and cooking on the in vitro digestibility, and phenolic profiles was evaluated for four Dutch sorghum varieties (HD7 and HD19, Sorghum bicolor; and HD100 and HD101 Sorghum nigricans) bred in the Netherlands. Protein content ranged from 9 to 14 % and grains with black pericarp were more resistant to dehulling. Essential amino acids composition analysis showed that the lysine chemical score (∼0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!