A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839714PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154261PLOS

Publication Analysis

Top Keywords

purinergic cholinergic
8
hyperventilatory response
8
response hypoxia
8
suramin a-317491
8
100 μm
8
μm ec50
8
carotid body
8
purinergic
5
zebrafish
5
μm
5

Similar Publications

Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.

View Article and Find Full Text PDF

Adipose stem-cell-derived microvesicles ameliorate long-term bladder ischemia-induced bladder underactivity.

J Formos Med Assoc

December 2024

Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan. Electronic address:

Background/purpose: The mechanism for long-term hypoxia/ischemia induced bladder underactivity is uncertain. It requires an effectively therapeutic treatment. Therefore, we determined the pathophysiologic mechanisms of long-term bilateral partial iliac arterial occlusion (BPAO)-induced bladder underactivity and explored the therapeutic potential of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs) on BPAO-induced bladder dysfunction.

View Article and Find Full Text PDF

Plantain has been reported to enhance testicular function indices, however, the mechanism remains unknown. The present study investigated the action mechanisms of a plantain-based diet in the treatment of rat testicular dysfunction caused by exposure to atrazine (ATZ). The rats were grouped into 10 groups (5 rats each); control group, 50% plantain-based diet (50% PBD), 25% PBD, 12.

View Article and Find Full Text PDF

Beta vulgaris L. is a root vegetable that is consumed mainly as a food additive. This study aimed to describe the protective effect of B.

View Article and Find Full Text PDF

Background: Inhibitory neuromuscular transmission in the gastrointestinal tract is mediated by intrinsic nitrergic and purinergic neurons. Purines activate G protein-coupled receptor P2Y receptors, increasing intracellular Ca that activates small conductance calcium-activated potassium (SK) channels. Little is known about the effect of adrenergic receptor activation on intestinal smooth muscle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!