Retinol-Binding Protein 4 Induces Cardiomyocyte Hypertrophy by Activating TLR4/MyD88 Pathway.

Endocrinology

Department of Geriatrics (W.G., Z.-X.L., X.L.), the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; Department of Medicine, Physiology, and Biophysics (W.G., L.Z., Y.C., J.-Z.B., Q.Y.), Center for Diabetes Research and Treatment, Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, California 92697; and Department of Cardiology (H.W., L.-S.W.), the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

Published: June 2016

Insulin resistance plays a major role in the development and progression of cardiac hypertrophy and heart failure. Heart failure in turn promotes insulin resistance and increases the risk for diabetes. The vicious cycle determines significant mortality in patients with heart failure and diabetes. However, the underlying mechanisms for the vicious cycle are not fully elucidated. Here we show that circulating levels and adipose expression of retinol-binding protein 4 (RBP4), an adipokine that contributes to systemic insulin resistance, were elevated in cardiac hypertrophy induced by transverse aortic constriction and angiotensin-II (Ang-II) infusion. Ang-II increased RBP4 expression in adipocytes, which was abolished by losartan, an Ang-II receptor blocker. The elevated RBP4 in cardiac hypertrophy may have pathophysiological consequences because RBP4 increased cell size, enhanced protein synthesis, and elevated the expression of hypertrophic markers including Anp, Bnp, and Myh7 in primary cardiomyocytes. Mechanistically, RBP4 induced the expression and activity of toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) in cardiomyocytes, resulting in enhanced inflammation and reactive oxygen species production. Inhibition or knockdown of the TLR4/MyD88 pathway attenuated inflammatory and hypertrophic responses to RBP4 stimulation. Importantly, RBP4 also reduced the expression of glucose transporter-4 and impaired insulin-stimulated glucose uptake in cardiomyocytes. This impairment was ameliorated in cardiomyocytes from TLR4 knockout mice. Therefore, RBP4 may be a critical modulator promoting the vicious cycle of insulin resistance and heart failure by activating TLR4/MyD88-mediated inflammatory pathways. Potentially, lowering RBP4 might break the vicious cycle and improve both insulin resistance and cardiac hypertrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4891784PMC
http://dx.doi.org/10.1210/en.2015-2022DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
cardiac hypertrophy
16
heart failure
16
vicious cycle
16
rbp4
9
retinol-binding protein
8
tlr4/myd88 pathway
8
hypertrophy
5
insulin
5
resistance
5

Similar Publications

Background: Perinatal growth and nutrition have been shown to be determinants in the programming of different tissues, such as adipose tissue, predisposing individuals to metabolic alterations later in life. Previous studies have documented an increased risk of metabolic disturbances and low-grade inflammation in prepubertal children with a history of extrauterine growth restriction (EUGR). The aim of this study was to evaluate possible alterations resulting from impaired growth during early childhood and their impact on young adult health.

View Article and Find Full Text PDF

The impact of metabolic syndrome on hepatocellular carcinoma: a mendelian randomization study.

Sci Rep

January 2025

Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Main Street, Nanchang, 330006, Jiangxi, China.

Traditional epidemiological studies are susceptible to confounding factors. To clarify the impact of metabolic syndrome and its diagnostic components on hepatocellular carcinoma, we conducted a preliminary mendelian randomization analysis with metabolic syndrome and its diagnostic components as exposures and hepatocellular carcinoma as the outcome. Another set of genetic data related to hepatocellular carcinoma was used as a validation cohort, repeating the mendelian randomization analysis and combining the two groups for a meta-analysis.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Background: The effective use of combination antiretroviral therapy (ART) has significantly improved the life expectancy of people living with the human immunodeficiency virus (HIV). However, complications have shifted from opportunistic infections to issues such as drug toxicity and resistance, as well as an increase in premature cardiovascular diseases (CVD). These conditions are attributed to chronic immune activation and persistent inflammation caused by HIV, along with lipid abnormalities and insulin resistance.

View Article and Find Full Text PDF

Background: To systematically evaluate the effect of green tea on patients with type 2 diabetes.

Methods: A computer search Cochrane, PubMed, Embase, CNKI, Wanfang, VIP, and other Chinese and English databases were conducted for randomized controlled trials of green tea in the treatment of patients with type 2 diabetes. The duration of these trials spanned from the establishment of the database to January 10, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!