In Situ Functionalized Polymers for siRNA Delivery.

Angew Chem Int Ed Engl

Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782, Spain.

Published: June 2016

A new method is reported herein for screening the biological activity of functional polymers across a consistent degree of polymerization and in situ, that is, under aqueous conditions and without purification/isolation of candidate polymers. In brief, the chemical functionality of a poly(acryloyl hydrazide) scaffold was activated under aqueous conditions using readily available aldehydes to obtain amphiphilic polymers. The transport activity of the resulting polymers can be evaluated in situ using model membranes and living cells without the need for tedious isolation and purification steps. This technology allowed the rapid identification of a supramolecular polymeric vector with excellent efficiency and reproducibility for the delivery of siRNA into human cells (HeLa-EGFP). The reported method constitutes a blueprint for the high-throughput screening and future discovery of new polymeric functional materials with important biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201601441DOI Listing

Publication Analysis

Top Keywords

aqueous conditions
8
polymers
5
situ functionalized
4
functionalized polymers
4
polymers sirna
4
sirna delivery
4
delivery method
4
method reported
4
reported screening
4
screening biological
4

Similar Publications

The behavior of water in concentrated ionic solutions, including supersaturated conditions, is crucial for numerous material and energy conversion processes and fundamental research. All electrolytes whether they "structure-make" or "structure-break" the water structure lead to slower water motion. This study investigates the structure and dynamics of aqueous NaCl solutions across a wide range of concentrations.

View Article and Find Full Text PDF

Introduction: Recurrent uveitis (RU), an autoimmune disease, is a leading cause of ocular detriment in humans and horses. Equine and human RU share many similarities including spontaneous disease and aberrant cytokine signaling. Reduced levels of SOCS1, a critical regulator of cytokine signaling, is associated with several autoimmune diseases.

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

The contamination of water with dyes stemming from the discharge of industrial waste poses significant environmental risks and health concerns. In this study, the phytoremediation potential of the wetland plant was investigated (as a function of plant biomass, pH, contact time, and initial dye concentration) for the removal of methylene blue and methyl red dyes from wastewater. The experimental adsorption capacities under the optimum conditions were found to be 1.

View Article and Find Full Text PDF

Microfluidic-Enabled Self-Directed Hydrogel Microspheres for Multiplexed MicroRNA Assays.

Anal Chem

January 2025

MOE Key Laboratory of Geriatric Nutrition and Health, Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China.

Multiplexed microRNA (miRNA) detection has proven valuable in disease diagnosis; yet, the development of advanced tools for their analysis remains a subject of broad interest. Here, we propose a novel single-particle method for multiplexed miRNA detection using self-directed hydrogel microspheres, which feature supersegmented compartments for loading analyte probes and an air-encapsulated region that grants the microsphere a unique preferred posture in aqueous solutions. By exploiting microfluidic technology, we can widely adjust the size of the microspheres and the number of compartments can be widely adjusted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!