https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=27099637&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 270996372016042120201001
1874-2106102016The open dentistry journalOpen Dent JPrevalence of β-lactam (bla TEM) and Metronidazole (nim) Resistance Genes in the Oral Cavity of Greek Subjects.899889-9810.2174/1874210601610010089The aim of this study is to investigate the prevalence of bla TEM and nim genes that encode resistance to β-lactams and nitroimidazoles, respectively, in the oral cavity of systemically healthy Greek subjects.After screening 720 potentially eligible subjects, 154 subjects were recruited for the study, including 50 periodontally healthy patients, 52 cases of gingivitis and 52 cases of chronic periodontitis. The clinical parameters were assessed with an automated probe. Various samples were collected from the tongue, first molars and pockets >6mm, and analysed by polymerase chain reaction-amplification of the bla TEM and nim genes, using primers and conditions previously described in the literature.There was a high rate of detection of bla TEM in plaque and tongue samples alike in all periodontal conditions (37% of plaque and 60% of tongue samples, and 71% of participants). The bla TEM gene was detected more frequently in the tongue samples of the periodontally healthy (56%) and chronic periodontitis (62%) groups compared to the plaque samples from the same groups (36% and 29%, respectively; z-test with Bonferroni corrections-tests, P<0.05). The nim gene was not detected in any of the 343 samples analysed.The oral cavity of Greek subjects often harbours bla TEM but not nim genes, and therefore the antimicrobial activity of β-lactams might be compromised.KoukosGeorgiosG251 General Air Force Hospital, Department of Periodontology, Athens, Greece.KonstantinidisAntoniosADepartment of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Greece.TsalikisLazarosLDepartment of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Greece.ArsenakisMinasMDepartment of Genetics and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Greece.SliniTheodoraTDepartment of Mechanical Engineering, Aristotle University of Thessaloniki, Greece.SakellariDimitraDDepartment of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Greece.engJournal Article20160328
United Arab EmiratesOpen Dent J1014805031874-2106blaTEM genemetronidazolemicrobial resistancenim geneβ-Lactams
2015226201511920151110201642260201642260201642261201611epublish27099637PMC482053310.2174/1874210601610010089TODENTJ-10-89World Health Organization. The Evolving Threat of Antimicrobial Resistance: options for action. Geneva [cited 2015 August 13]. 2015. Available from: http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf .Sweeney L.C., Dave J., Chambers P.A., Heritage J. Antibiotic resistance in general dental practice--a cause for concern? J. Antimicrob. Chemother. 2004;53(4):567–576. doi: 10.1093/jac/dkh137.10.1093/jac/dkh13714985274Fluit A.C., Visser M.R., Schmitz F.J. Molecular detection of antimicrobial resistance. Clin. Microbiol. Rev. 2001;14(4):836–871. doi: 10.1128/CMR.14.4.836-871.2001.10.1128/CMR.14.4.836-871.2001PMC8900611585788Roberts A.P., Pratten J., Wilson M., Mullany P. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol. Lett. 1999;177(1):63–66. doi: 10.1111/j.1574-6968.1999.tb13714.x.10.1111/j.1574-6968.1999.tb13714.x10436923Warburton P.J., Palmer R.M., Munson M.A., Wade W.G. Demonstration of in vivo transfer of doxycycline resistance mediated by a novel transposon. J. Antimicrob. Chemother. 2007;60(5):973–980. doi: 10.1093/jac/dkm331.10.1093/jac/dkm33117855723Poole K. Resistance to β-lactam antibiotics. Cell. Mol. Life Sci. 2004;61(17):2200–2223. doi: 10.1007/s00018-004-4060-9.10.1007/s00018-004-4060-9PMC1113853415338052Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001;65(2):232–260. doi: 10.1128/MMBR.65.2.232-260.2001.10.1128/MMBR.65.2.232-260.2001PMC9902611381101Carlier J.P., Sellier N., Rager M.N., Reysset G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob. Agents Chemother. 1997;41(7):1495–1499.PMC1639469210672European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2012. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm [cited 2015 August 13]. 2012. Available from: http://www.ecdc.europa.eu/en/publica-tions/Publications/antimicrobial-resistance-surveillance-europe-2012.pdf .Tonetti M.S., Claffey N., European Workshop in Periodontology group C Advances in the progression of periodontitis and proposal of definitions of a periodontitis case and disease progression for use in risk factor research. Group C consensus report of the 5th European Workshop in Periodontology. J. Clin. Periodontol. 2005;32(Suppl. 6):210–213. doi: 10.1111/j.1600-051X.2005.00822.x.10.1111/j.1600-051X.2005.00822.x16128839Osborn J., Stoltenberg J., Huso B., Aeppli D., Pihlstrom B. Comparison of measurement variability using a standard and constant force periodontal probe. J. Periodontol. 1990;61(8):497–503. doi: 10.1902/jop.1990.61.8.497.10.1902/jop.1990.61.8.4972391627Goncharoff P., Figurski D.H., Stevens R.H., Fine D.H. Identification of Actinobacillus actinomycetemcomitans: polymerase chain reaction amplification of lktA-specific sequences. Oral Microbiol. Immunol. 1993;8(2):105–110. doi: 10.1111/j.1399-302X.1993.tb00554.x.10.1111/j.1399-302X.1993.tb00554.x8355983Livermore D.M. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995;8(4):557–584.PMC1728768665470Trinh S., Reysset G. Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J. Clin. Microbiol. 1996;34(9):2078–2084.PMC2291938862561Alsultan A.A., Aboulmagd E., Amin T.T. ESBL-producing E. coli and K. pneumoniae in Al-Ahsa, Saudi Arabia: antibiotic susceptibility and prevalence of blaSHV and blaTEM. J. Infect. Dev. Ctries. 2013;7(12):1016–1019. doi: 10.3855/jidc.3764.10.3855/jidc.376424334953Ioannidis I., Sakellari D., Spala A., Arsenakis M., Konstantinidis A. Prevalence of tetM, tetQ, nim and bla(TEM) genes in the oral cavities of Greek subjects: a pilot study. J. Clin. Periodontol. 2009;36(7):569–574. doi: 10.1111/j.1600-051X.2009.01425.x.10.1111/j.1600-051X.2009.01425.x19538330Fosse T., Madinier I., Hitzig C., Charbit Y. Prevalence of beta-lactamase-producing strains among 149 anaerobic gram-negative rods isolated from periodontal pockets. Oral Microbiol. Immunol. 1999;14(6):352–357. doi: 10.1034/j.1399-302X.1999.140604.x.10.1034/j.1399-302X.1999.140604.x10895690Rams T.E., Degener J.E., van Winkelhoff A.J. Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol. 2014;85(1):160–169. doi: 10.1902/jop.2013.130142.10.1902/jop.2013.13014223688097Walker C.B. The acquisition of antibiotic resistance in the periodontal microflora. Periodontology 2000. 1996;10(1):79–88. doi: 10.1111/j.1600-0757.1996.tb00069.x.10.1111/j.1600-0757.1996.tb00069.x9567938van Winkelhoff A.J., Herrera D., Oteo A., Sanz M. Antimicrobial profiles of periodontal pathogens isolated from periodontitis patients in The Netherlands and Spain. J. Clin. Periodontol. 2005;32(8):893–898. doi: 10.1111/j.1600-051X.2005.00782.x.10.1111/j.1600-051X.2005.00782.x15998275Patel M. The prevalence of beta lactamase-producing anaerobic oral bacteria in South African patients with chronic periodontitis. SADJ. 2011;66(9):416–418.23193871Rams T.E., Degener J.E., van Winkelhoff A.J. Prevalence of β-lactamase-producing bacteria in human periodontitis. J. Periodontal Res. 2013;48(4):493–499. doi: 10.1111/jre.12031.10.1111/jre.1203123173872Wilke M.S., Lovering A.L., Strynadka N.C. Beta-lactam antibiotic resistance: a current structural perspective. Curr. Opin. Microbiol. 2005;8(5):525–533. doi: 10.1016/j.mib.2005.08.016.10.1016/j.mib.2005.08.01616129657van Winkelhoff A.J., Winkel E.G., Barendregt D., Dellemijn-Kippuw N., Stijne A., van der Velden U. βeta-lactamase producing bacteria in adult periodontitis. J. Clin. Periodontol. 1997;24(8):538–543. doi: 10.1111/j.1600-051X.1997.tb00226.x.10.1111/j.1600-051X.1997.tb00226.x9266340Feres M., Haffajee A.D., Allard K., Som S., Goodson J.M., Socransky S.S. Antibiotic resistance of subgingival species during and after antibiotic therapy. J. Clin. Periodontol. 2002;29(8):724–735. doi: 10.1034/j.1600-051X.2002.290809.x.10.1034/j.1600-051X.2002.290809.x12390569Guerrero A., Nibali L., Lambertenghi R., Ready D., Suvan J., Griffiths G.S., Wilson M., Tonetti M.S. Impact of baseline microbiological status on clinical outcomes in generalized aggressive periodontitis patients treated with or without adjunctive amoxicillin and metronidazole: an exploratory analysis from a randomized controlled clinical trial. J. Clin. Periodontol. 2014;41(11):1080–1089. doi: 10.1111/jcpe.12299.10.1111/jcpe.1229925139116European Centre for Disease Prevention and Control. Surveillance of antimicrobial consumption in Europe, 2010. Stockholm [cited 2015 August 13]. 2010. Available from: http://ecdc.europa.eu/en/publications/Publications/antimi-crobial-antibiotic-consumption-ESAC- report-2010-data.pdf .Koukos G., Sakellari D., Arsenakis M., Tsalikis L., Slini T., Konstantinidis A. Prevalence of tetracycline resistance genes in the oral cavity of Greek subjects. J Biol Res-Thessalon. 2013;20:387–394.Trinh S., Reysset G. Identification and DNA sequence of the mobilization region of the 5-nitroimidazole resistance plasmid pIP421 from Bacteroides fragilis. J. Bacteriol. 1997;179(12):4071–4074.PMC1792239190830Alauzet C., Mory F., Teyssier C., Hallage H., Carlier J.P., Grollier G., Lozniewski A. Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrob. Agents Chemother. 2010;54(1):60–64. doi: 10.1128/AAC.01003-09.10.1128/AAC.01003-09PMC279848319805556Abu-Fanas S.H., Drucker D.B., Hull P.S., Reeder J.C., Ganguli L.A. Identification, and susceptibility to seven antimicrobial agents, of 61 gram-negative anaerobic rods from periodontal pockets. J. Dent. 1991;19(1):46–50. doi: 10.1016/0300-5712(91)90038-Z.10.1016/0300-5712(91)90038-Z1901873Listgarten M.A., Lai C.H., Young V. Microbial composition and pattern of antibiotic resistance in subgingival microbial samples from patients with refractory periodontitis. J. Periodontol. 1993;64(3):155–161. doi: 10.1902/jop.1993.64.3.155.10.1902/jop.1993.64.3.1558463936Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–138. doi: 10.1016/S0140-6736(01)05321-1.10.1016/S0140-6736(01)05321-111463434ten Cate J.M. Biofilms, a new approach to the microbiology of dental plaque. Odontology. 2006;94(1):1–9. doi: 10.1007/s10266-006-0063-3.10.1007/s10266-006-0063-316998612Hausner M., Wuertz S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 1999;65(8):3710–3713.PMC9155510427070Roschanski N., Fischer J., Guerra B., Roesler U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One. 2014;9(7):e100956. doi: 10.1371/journal.pone.0100956.10.1371/journal.pone.0100956PMC410247325033234