Background: The aim of this paper is to evaluate the efficacy and safety of DLBS3233, a novel bioactive fraction derived from Cinnamomum burmanii and Lagerstroemia speciosa, in improving insulin resistance and preserving β-cell performance in patients with impaired glucose tolerance (IGT).
Patients And Methods: Eighty adult subjects with IGT, defined as 2-hour postprandial glucose level of 140-199 mg/dL, were enrolled in this two-arm, 12-week, double-blind, randomized, placebo-controlled preliminary study. Eligible subjects were randomly allocated to receive either DLBS3233 at a dose of 50-100 mg daily or placebo for 12 weeks. The study mainly assessed the improvement of homeostatic model-assessed insulin resistance (HOMA-IR), the 15-minute and 2-hour plasma insulin levels, and the oral disposition index.
Results: After 12 weeks, DLBS3233 improved insulin resistance better than placebo as reflected by a reduced HOMA-IR (-27.04%±29.41% vs -4.90%±41.27%, P=0.013). The improvement of the first- and second-phase insulin secretion was consistently greater in DLBS3233 group than placebo group (-144.78±194.06 vs -71.21±157.19, P=0.022, and -455.03±487.56 vs -269.49±467.77, P=0.033, respectively). Further, DLBS3233 also significantly better improved oral disposition index than placebo. No serious hypoglycemia, edema, or cardiovascular-related adverse events were found in either groups.
Conclusion: This study has shown that DLBS3233 at the dose of 50-100 mg once daily was well tolerated, and promisingly efficacious in improving insulin sensitivity as well as preserving β-cell performance in subjects with IGT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820281 | PMC |
http://dx.doi.org/10.2147/DDDT.S97568 | DOI Listing |
Biomark Med
January 2025
Neurology Department, University Hospital Fattouma Bourguiba, Monastir, Tunisia.
Background: Accurate distinction between stroke etiologic subtypes is critical for physicians to provide tailored treatment. The triglyceride-glucose (TyG) index, a marker of insulin resistance, has been associated with stroke risk but its role in distinguishing stroke etiologic subtypes remains unclear. We aimed to assess the TyG index's ability to differentiate cardioembolic (CE) from non-cardioembolic (NCE) strokes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China.
Background: The triglycerides to Apolipoprotein A1 ratio (TG/APOA1) holds promise to be a more valuable index of insulin resistance for the diagnosis of metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). This study aims to evaluate the correlation between TG/APOA1 and MAFLD, as well as compare the efficacy of TG/APOA1 with triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c) and triglyceride-glucose (TyG) index in identifying MAFLD among individuals with T2DM.
Method: This study consecutively recruited 779 individuals with T2DM for the investigation.
Front Endocrinol (Lausanne)
December 2024
Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China.
Background: Body mass index (BMI) consistently correlates with the triglyceride-glucose (TyG) index, a marker of insulin resistance, which in turn is linked to heightened cardiovascular disease (CVD) risk. Thus, insulin resistance could potentially mediate the association between BMI and CVD risk. However, few studies have explored this mechanism in the general population.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.
Diabetic cardiomyopathy (DMCM), defined as left ventricular dysfunction in the setting of diabetes mellitus without hypertension, coronary artery disease or valvular heart disease, is a well-recognized entity whose prevalence is certainly predicted to increase alongside the rising incidence and prevalence of diabetes mellitus. The pathophysiology of DMCM stems from hyperglycemia and insulin resistance, resulting in oxidative stress, inflammation, cardiomyocyte death, and fibrosis. These perturbations lead to left ventricular hypertrophy with associated impaired relaxation early in the course of the disease, and eventually culminating in combined systolic and diastolic heart failure.
View Article and Find Full Text PDFBackground: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!