When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

Am J Physiol Cell Physiol

Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia;

Published: July 2016

AI Article Synopsis

  • AMPK is a protein complex that acts as a sensor for energy levels in skeletal muscle, being activated during exercise to help regulate metabolism.
  • In experiments with rat muscle fibers, a significant portion of AMPK was found to be diffusible, with most remaining unattached to glycogen.
  • The study suggests that during muscle contraction, AMPK activation does not lead to a decrease in the phosphorylation of β2-AMPK, raising doubts about its role in interacting with carbohydrates in muscle tissue.

Article Abstract

The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00047.2016DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
muscle
9
extensor digitorum
8
digitorum longus
8
associated glycogen
8
skeletal
5
phosphorylated thr148
4
thr148 β2-subunit
4
β2-subunit amp-activated
4
amp-activated kinase
4

Similar Publications

The worldwide epidemic of obesity has drastically worsened with the increase in more sedentary lifestyles and increased consumption of fatty foods. Increased blood free fatty acids (FFAs), often observed in obesity, leads to impaired insulin action, and promotes the development of insulin resistance and Type 2 diabetes mellitus (T2DM). JNK, IKK-NF-κB, and STAT3 are known to be involved in skeletal muscle insulin resistance.

View Article and Find Full Text PDF

Liver-Secreted Extracellular Vesicles Promote Cirrhosis-Associated Skeletal Muscle Injury Through mtDNA-cGAS/STING Axis.

Adv Sci (Weinh)

January 2025

Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.

Skeletal muscle atrophy (sarcopenia) is a serious complication of liver cirrhosis, and chronic muscle inflammation plays a pivotal role in its pathologenesis. However, the detailed mechanism through which injured liver tissues mediate skeletal muscle inflammatory injury remains elusive. Here, it is reported that injured hepatocytes might secrete mtDNA-enriched extracellular vesicles (EVs) to trigger skeletal muscle inflammation by activating the cGAS-STING pathway.

View Article and Find Full Text PDF

In this study we used an ex model to assess the effect of feeding older (50 - 70 y) adults a casein protein hydrolysate (CPH) compared with non-bioactive non-essential amino acid (NEAA) supplement on muscle protein synthesis (MPS) and markers of muscle protein breakdown (MPB). As a secondary objective, to assess any attenuation with aging, we compared the anabolic response to CPH-fed serum from older and young adults. Serum from seven healthy older and seven young men following overnight fast and 60 min postprandial ingestion of CPH or NEAA (0.

View Article and Find Full Text PDF

Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!