AI Article Synopsis

  • TDP2 plays a crucial role in repairing DNA damage caused by topoisomerase II, contributing to resistance against cancer treatments.
  • Previous research identified deazaflavin-based molecules that inhibit TDP2 effectively, but their specific mechanism was unclear.
  • Recent findings demonstrate that these compounds act as competitive inhibitors by binding to TDP2's DNA substrate site, paving the way for the development of new and more effective TDP2 inhibitors.

Article Abstract

Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4925160PMC
http://dx.doi.org/10.1042/BCJ20160180DOI Listing

Publication Analysis

Top Keywords

mode action
12
small molecule
8
molecule inhibitors
8
dna phosphodiesterase
8
tdp2
7
action dna-competitive
4
dna-competitive small
4
inhibitors tyrosyl
4
dna
4
tyrosyl dna
4

Similar Publications

Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers.

View Article and Find Full Text PDF

The development of innovative and effective strategies to combat fungal pathogens is critical to sustainable crop protection. Fungicides have been used for over two centuries, with traditional copper- and sulfur-based formulations still in use due to their broad-spectrum, multisite mode of action, which minimizes the risk of pathogen resistance. In contrast, modern systemic fungicides, though potent, often target a single site of action, leading to the accelerated emergence of resistant fungal strains.

View Article and Find Full Text PDF

Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .

View Article and Find Full Text PDF

To investigate the water damage at the interface between emulsified asphalt and aggregate under the action of external water infiltration, firstly, cetyltrimethylammonium bromide was used as an emulsifier to prepare emulsified asphalt in the laboratory, and its basic properties were tested. Then, based on molecular dynamics, an emulsified asphalt-aggregate interface model with different water contents was constructed to calculate the adhesion work of the emulsified asphalt-aggregate interface. The results show that the simulated values of emulsified asphalt density, cohesive energy density, and solubility are in good agreement with the experimental values.

View Article and Find Full Text PDF

Antimicrobial Activity and Mode of Action of N-Heterocyclic Carbene Silver(I) Complexes.

Molecules

December 2024

Department of Pharmacy and Interuniversity Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", Via Montesano 49, 80131 Naples, Italy.

Silver drugs have played a vital role in human healthcare for the treatment of infections for many centuries. Currently, due to antibiotic resistance, a potential scenario or the application of silver complexes may arise as substitutes for conventional antibiotics. In this perspective, N-heterocyclic carbene (NHC) ligands have been selected as carrier molecules for silver ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!