A combinatorial screening revealed the peptide H-His-d-Leu-d-Asp-NH2 (1) as an additive for the generation of monodisperse, water-soluble palladium nanoparticles with average diameters of 3 nm and stabilities of over 9 months. The tripeptide proved to be also applicable for the size-controlled formation of other noble-metal nanoparticles (Pt and Au). Studies with close analogues of peptide 1 revealed a specific role of each of the three amino acids for the formation and stabilization of the nanoparticles. These data combined with microscopic and spectroscopic analyses provided insight into the structure of the self-assembled peptidic monolayer around the metal core. The results open interesting prospects for the development of functionalized metal nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201510337 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Petroleum Engineering and Geoengineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, Uttar Pradesh 229304, India.
The optimal design of cement slurry by balancing various cement additives and cement is critical for effective oil well cementation job. However, given adverse circumstances of application, existing additives may not be sufficient to perform suitably in challenging conditions, leading to premature cement hydration, formation of microcracks, and gas channeling pathways. Thus, this study explores the use of a single-step silica nanofluid (NP size: 5-10, 90-100, and 250-300 nm and concentration: 1, 3, and 5 wt %) as an additive and explores its effect on thickening time, fluid loss, and rheological behavior of class G cement slurry at high-pressure and high-temperature (HPHT) conditions (135 °C and 3625 psi).
View Article and Find Full Text PDFHeliyon
November 2024
Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720, Szeged, Hungary.
Catalytic studies aim to design new catalysts to eliminate unwanted by-products and obtain 100 % selectivity for the preferred target product without losing activity. For this purpose, understanding the role of each component building up the catalyst is essential. However, determining the intrinsic catalytic activity of pure metals, especially precious metals in the CO hydrogenation reaction under ambient conditions is complex.
View Article and Find Full Text PDFSmall
December 2024
Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510000, China.
Lab Chip
September 2024
Micro Nano Bio Fluidics Unit, Department of Mechanical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, India.
Size-controlled monodisperse droplets are indispensable in food, cosmetics, and healthcare industries. Although emulsion formation from bulk phases is well-explored, a robust method to continuously reform existing emulsions is unavailable. Remarkably, we introduce a continuous flow acousto-microfluidics technique which enables simultaneous trapping-coalescence-splitting of droplets to reform an existing polydisperse emulsion into size-controlled droplets with improved monodispersity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!