Background: The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.

Results: We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3(-/-) does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency.

Conclusions: The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1(-/-) mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal membranes and consequent failure of autophagosomal processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837601PMC
http://dx.doi.org/10.1186/s12915-016-0255-4DOI Listing

Publication Analysis

Top Keywords

gks proteins
20
activated gks
16
irg proteins
12
proteins
9
membranes
9
immunity-related gtpase
8
gtpase irg
8
irg irgm1
8
activation effector
8
effector irg
8

Similar Publications

RIPK1 inhibition in malignant cells potentiates immunotherapy and radiotherapy outcome.

Oncoimmunology

December 2024

Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.

Apoptosis, necroptosis and pro-inflammatory NF-κB-dependent signaling are repressed by receptor-interacting serine/threonine-protein kinase 1 (RIPK1). A recent paper in describes a small molecule inducing the proteolytic degradation of RIPK1. In preclinical experiments, this RIPK1 inhibitor improved the anticancer efficacy of radiotherapy, immunotherapy (with PD-1 blockade) and radioimmunotherapy (with CTLA-4 blockade).

View Article and Find Full Text PDF

Pathogenic role of acyl coenzyme A binding protein (ACBP) in Cushing's syndrome.

Nat Metab

December 2024

Metabolomics and Cell Biology Platforms, UMS AMMICa, Gustave Roussy Institut, Villejuif, France.

Article Synopsis
  • Cushing's syndrome is linked to high levels of glucocorticoids and is associated with increased plasma levels of ACBP/DBI, which stimulates food intake and fat production.
  • Researchers explored multiple methods to inhibit ACBP/DBI in mice, including genetic modifications and antibody injections, to address Cushing's symptoms.
  • The findings suggest that targeting ACBP/DBI could be an effective strategy for treating Cushing's syndrome and its related complications like obesity and diabetes.
View Article and Find Full Text PDF

High circulating HMGB1 indicates good prognosis in patients with advanced leiomyosarcoma under chemoimmunotherapy.

Oncoimmunology

December 2024

Equipe labellisée par La Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Paris, France.

Few clinical studies investigated the putative link between the activation of immunogenic cell death (ICD) and the oncological outcome. Recent data, published in a Phase 1b trial, demonstrated that an ICD-associated surge in the plasma concentration of high-mobility group box 1 (HMGB1) indicates favorable prognosis in patients with advanced leiomyosarcomas treated with the combination of doxorubicin, dacarbazine and nivolumab.

View Article and Find Full Text PDF

Background: Medication overuse headache is a prevalent secondary headache due to the overuse of analgesics, mainly over-the-counter analgesics. Over-the-counter analgesics have been associated with disrupted male endocrinology, while the effects on female endocrinology remain nearly unknown. The aim was to understand the effect of long-term analgesic exposure in females with medication overuse headache on Anti-Müllerian hormone, a surrogate measure of female fertility.

View Article and Find Full Text PDF

ACBP/DBI neutralization for the experimental treatment of fatty liver disease.

Cell Death Differ

November 2024

Centre de Recherche des Cordeliers, Inserm U1138, Université de Paris, Sorbonne Université, Equipe labellisée par la Ligue contre le cancer, Institut Universitaire de France, Paris, France.

Article Synopsis
  • ACBP/DBI is a protein linked to metabolic-associated steatohepatitis and liver fibrosis, showing higher levels in affected patients, correlating strongly with NAFLD and FIB4 scores, regardless of age or body mass index.
  • A study used a monoclonal antibody to neutralize ACBP/DBI in various mouse models of liver disease, resulting in reduced signs of liver damage and halting disease progression.
  • The results suggest ACBP/DBI plays a causal role in liver conditions and could be a potential therapeutic target for treating liver diseases.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!