The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912454PMC
http://dx.doi.org/10.1021/acschembio.6b00001DOI Listing

Publication Analysis

Top Keywords

small molecules
20
rna motif-small
12
motif-small molecule
12
molecules target
8
rna
8
molecule binding
8
binding partners
8
lead small
8
small
6
molecules
5

Similar Publications

Spinal cord injury (SCI) is a severe central nervous system injury without effective therapies. PANoptosis is involved in the development of many diseases, including brain and spinal cord injuries. However, the biological functions and molecular mechanisms of PANoptosis-related genes in spinal cord injury remain unclear.

View Article and Find Full Text PDF

Deoxyribonucleic acid (DNA) serves as a repository of genetic information in cells and is a critical molecular target for various antibiotics and anticancer drugs. A profound understanding of small molecule interaction with DNA is crucial for the rational design of DNA-targeted therapies. While the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics/generalized Born surface area (MM/GBSA) approaches have been well established for predicting protein-ligand binding, their application to DNA-ligand interactions has been less explored.

View Article and Find Full Text PDF

Peptide , a C18 fatty acid-modified single-chain relaxin analogue, was recently identified as a potent, selective, and long-lasting relaxin family peptide receptor 1 (RXFP1) agonist. Further advanced pharmacokinetic profiling of this compound highlighted elevated levels of oxidative metabolism occurring in dogs and mini pigs but only marginally in rats. This study aimed to design long-lasting relaxin analogues with increased stability against metabolic oxidation while securing subnanomolar RXFP1 potency.

View Article and Find Full Text PDF

The potential of the two-dimensional ruthenium carbide (RuC) nanosheet to detect highly toxic environmental compounds - namely, Furan (Fur) and 1,n-Dioxane (1,n-Diox) - was investigated utilizing the density functional theory (DFT) approach. The adsorption features of the Fur and 1,n-Diox molecules on the RuC nanosheet were evaluated in parallel and vertical configurations. From energetic manifestations, Fur and 1,n-Diox molecules preferred to be adsorbed in the parallel configuration rather than the vertical one on the RuC nanosheet with negative E values of -27.

View Article and Find Full Text PDF

Controlled Release of Hydrophilic Drug from Hollow Nanodots.

Small

January 2025

Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.

Here the challenge of limited encapsulation efficiency of ionizable hydrophilic molecules in silica materials is addressed. Two effective strategies are showcased that allow high encapsulation efficiency of salicylic acid, while simultaneously maintaining the morphology and particle size of silica nanocapsules. These promising approaches involve the formation and encapsulation of a prodrug or the complexation of the hydrophilic payload with a hydrophobic moiety to form a complex that is dissociated in acidic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!