Covering arrays are structures for well-representing extremely large input spaces and are used to efficiently implement blackbox testing for software and hardware. This paper proposes refinements over the In-Parameter-Order strategy (for arbitrary t). When constructing homogeneous-alphabet covering arrays, these refinements reduce runtime in nearly all cases by a factor of more than 5 and in some cases by factors as large as 280. This trend is increasing with the number of columns in the covering array. Moreover, the resulting covering arrays are about 5 % smaller. Consequently, this new algorithm has constructed many covering arrays that are the smallest in the literature. A heuristic variant of the algorithm sometimes produces comparably sized covering arrays while running significantly faster.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652878PMC
http://dx.doi.org/10.6028/jres.113.022DOI Listing

Publication Analysis

Top Keywords

covering arrays
24
in-parameter-order strategy
8
covering
7
arrays
6
refining in-parameter-order
4
strategy constructing
4
constructing covering
4
arrays covering
4
arrays structures
4
structures well-representing
4

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Background: Glial cells exhibit distinct transcriptional responses to β-amyloid pathology in Alzheimer's disease (AD). While sophisticated single-cell based methods have revealed heterogeneous glial subpopulations in the human AD brain, the histological localization of these multicellular responses to AD pathology has not been fully characterized due to the loss of spatial information. Here, we combined spatial transcriptomics (ST) with immunohistochemistry to explore the molecular mechanisms in the neuritic plaque niche.

View Article and Find Full Text PDF

Background: APOE*4 is the strongest genetic risk for late-onset Alzheimer's disease (AD), but other genetic loci may counter its detrimental effect, providing therapeutic avenues. Expanding beyond non-Hispanic White subjects, we sought to additionally leverage genetic data from non-Hispanic and Hispanic subjects of admixed African ancestry to perform trans-ancestry APOE*4-stratified GWAS, anticipating that allele frequency differences across populations would boost power for gene discovery.

Method: Participants were ages 60+, of European (EU; ≥75%) or admixed African (AFR; ≥25%) ancestry, and diagnosed as cases or controls.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.

Background: Several studies have indicated sex-specific genetic risk for Alzheimer's disease (AD), but these were centered on non-Hispanic White individuals of European ancestry. We sought to identify sex-specific genetic variants for AD in non-Hispanic and Hispanic subjects of admixed African ancestry.

Method: Participants were ages 60+, of African ancestry (≥25%), and diagnosed as cases or controls.

View Article and Find Full Text PDF

When the combinatorial testing method is used to locate faults in the complex signalling system of high-speed rail in order to prevent the system from being affected by combinatorial testing case explosion, which could results from the masking effects caused by multiple faults, the Minimum Fault Schema (MFS) can be accurately and efficiently located. Taking the Automatic Train Operation (ATO) scenario in intelligent high-speed rail as an example, a fault localization method based on the Adaptive Error Locating Array (AELA) algorithm is proposed. To begin with, according to the characteristics of ATO, the adaptive fault localization model is designed and the test parameter table is constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!