Background: Laminins are heterotrimeric complexes, consisting of α, β and γ subunits that form a major component of basement membranes and extracellular matrix. Laminin complexes have different, but often overlapping, distributions and functions.

Methods: Under our clinical protocol, NCT00068224, we have performed extensive clinical and neuropsychiatric phenotyping, neuroimaging and molecular analysis in patients with laminin α1 (LAMA1)-associated lamininopathy. We investigated the consequence of mutations in LAMA1 using patient-derived fibroblasts and neuronal cells derived from neuronal stem cells.

Results: In this paper we describe individuals with biallelic mutations in LAMA1, all of whom had the cerebellar dysplasia, myopia and retinal dystrophy, in addition to obsessive compulsive traits, tics and anxiety. Patient-derived fibroblasts have impaired adhesion, reduced migration, abnormal morphology and increased apoptosis due to impaired activation of Cdc42, a member of the Rho family of GTPases that is involved in cytoskeletal dynamics. LAMA1 knockdown in human neuronal cells also showed abnormal morphology and filopodia formation, supporting the importance of LAMA1 in neuronal migration, and marking these cells potentially useful tools for disease modelling and therapeutic target discovery.

Conclusion: This paper broadens the phenotypes associated with LAMA1 mutations. We demonstrate that LAMA1 deficiency can lead to alteration in cytoskeletal dynamics, which may invariably lead to alteration in dendrite growth and axonal formation. Estimation of disease prevalence based on population studies in LAMA1 reveals a prevalence of 1-20 in 1 000 000.

Trial Registration Number: NCT00068224.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378307PMC
http://dx.doi.org/10.1136/jmedgenet-2015-103416DOI Listing

Publication Analysis

Top Keywords

cerebellar dysplasia
8
lama1
8
lama1 mutations
8
obsessive compulsive
8
compulsive traits
8
mutations lama1
8
patient-derived fibroblasts
8
neuronal cells
8
abnormal morphology
8
cytoskeletal dynamics
8

Similar Publications

Loss-of-function of DDR1 is responsible for a chondrodysplasia with multiple dislocations.

J Bone Miner Res

December 2024

Paris Cité University, Reference center for skeletal dysplasia, INSERM UMR 1163, Imagine Institute, Necker Enfants Malades Hospital (AP-HP), Paris, France.

Chondrodysplasias with multiple dislocations are rare skeletal disorders characterized by hyperlaxity, joint dislocations, and growth retardation. Chondrodysplasias with multiple dislocations have been linked to pathogenic variants in genes encoding proteins involved in the proteoglycan biosynthesis. In this study, by exome sequencing analysis, we identified a homozygous nonsense variant (NM_001297654.

View Article and Find Full Text PDF

Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.

View Article and Find Full Text PDF

Test article (TA)-induced seizures represent a major safety concern in drug development. Seizures (altered brain wave [electrophysiological] patterns) present clinically as abnormal consciousness with or without tonic/clonic convulsions (where "tonic" = stiffening and "clonic" = involuntary rhythmical movements). Neuropathological findings following seizures may be detected using many methods.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis involved 2,431 cases and 1,265 healthy controls, revealing that individuals with the MTHFR variant had a significantly higher risk for conditions like respiratory distress, recurrent pregnancy loss, and intellectual disabilities.
  • * The MTHFR TT-genotype specifically indicated a high risk of abnormal phenotypes, emphasizing the importance of this genetic variant in neurodevelopmental and other health-related outcomes.
View Article and Find Full Text PDF

Generation of IPi002-A/B/C human induced pluripotent stem cell lines from MARCH amniotic fluid cells.

Stem Cell Res

December 2024

Chemogenomic and Biological Screening Core Facility, Center for Technological Resources and Research, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris-Cité, CNRS UMR 3523, F-75015 Paris, France. Electronic address:

Human induced pluripotent stem cells (hiPSCs) have become a revolutionary tool in biomedical research due to their unique in vitro properties and fate versatility. They offer insights into development or genetic disorders, facilitate drug discovery and hold promise for regenerative medicine. Here we generated three hiPSC cells - IPi002-A/B/C - from primary amniotic fluid cells (AFCs) obtained via amniocentesis for the prenatal diagnosis of MARCH syndrome: Multinucleated neurons, Anhydramnios, Renal dysplasia, Cerebellar hypoplasia, and Hydranencephaly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!