Helmut Sies and the compartmentation of hydroperoxide metabolism.

Arch Biochem Biophys

Universidad de la República, Facultad de Medicina, Departamento de Bioquímica, Avda. General Flores 2125, 11800, Montevideo, Uruguay; University of Padova, Faculty of Medicine, Department of Molecular Medicine, Viale G. Colombo 3, I-35121, Padova, Italy. Electronic address:

Published: April 2016

The early work of Helmut Sies on mammalian hydroperoxide metabolism is reviewed with particular emphasis on the in situ function of catalase and glutathione peroxidase1. Starting out from a catalase-dominated thinking in the middle of the last century, Sies first demonstrated, by whole organ spectroscopy, that H2O2 is generated in rat liver and metabolized by catalase. In a joined effort with the author's group, he then worked out that glutathione peroxidase can kinetically compete with catalase in hydroperoxide metabolism in situ. In compartmentalized cells, however, the "competition" of the two enzymes turned out to be a mutual complementation because of their different subcellular location. The studies for the first time documented that the metabolism of freely diffusible hydroperoxides is compartmentalized and, thus, paved the way to a better understanding of oxidant challenges and redox regulation. The article, garnished with personal memories, is meant as a nostalgic journey though ancient times of biochemistry with their changing fashions and paradigms, revealing the roots of topical perspectives and controversies in redox biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2015.11.018DOI Listing

Publication Analysis

Top Keywords

hydroperoxide metabolism
12
helmut sies
8
sies compartmentation
4
compartmentation hydroperoxide
4
metabolism
4
metabolism early
4
early work
4
work helmut
4
sies mammalian
4
mammalian hydroperoxide
4

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Unlabelled: Honey is abundant in bioactive compounds, which demonstrate considerable therapeutic effects, particularly on oxidative stress and inflammation.

Objectives: This work sought to evaluate the antioxidant mechanisms of Manuka honey (MH) and Ohia Lehua honey (OLH), correlating them with phytochemical analyses in a rat model of experimentally induced inflammation.

Methods: The identification of polyphenolic compounds in the extracts was carried out using HPLC-ESI MS.

View Article and Find Full Text PDF

Catalytically active nanomaterials, or nanozymes, have gained significant attention as alternatives to natural enzymes due to their low cost, ease of preparation, and enhanced stability. Because of easy preparation, excellent biocompatibility, and unique optoelectronic properties, gold nanoparticles (AuNPs) have attracted increasing attention in many fields, including nanozymes. In this work, we demonstrated the applicability of beta-cyclodextrin functionalized gold nanoparticles (β-CD-AuNPs) as enzyme mimics for different substances, including TMB and DA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!