Cardiac hypertrophy is associated with growth and functional changes of cardiomyocytes, including mitochondrial alterations, but the latter are still poorly understood. Here we investigated mitochondrial function and dynamic localization in neonatal rat ventricular cardiomyocytes (NRVCs) stimulated with insulin like growth factor 1 (IGF1) or phenylephrine (PE), mimicking physiological and pathological hypertrophic responses, respectively. A decreased activity of the mitochondrial electron transport chain (ETC) (state 3) was observed in permeabilized NRVCs stimulated with PE, whereas this was improved in IGF1 stimulated NRVCs. In contrast, in intact NRVCs, mitochondrial oxygen consumption rate (OCR) was increased in PE stimulated NRVCs, but remained constant in IGF1 stimulated NRVCs. After stimulation with PE, mitochondria were localized to the periphery of the cell. To study the differences in more detail, we performed gene array studies. IGF1 and PE stimulated NRVCs did not reveal major differences in gene expression of mitochondrial encoding proteins, but we identified a gene encoding a motor protein implicated in mitochondrial localization, kinesin family member 5b (Kif5b), which was clearly elevated in PE stimulated NRVCs but not in IGF1 stimulated NRVCs. We confirmed that Kif5b gene and protein expression were elevated in animal models with pathological cardiac hypertrophy. Silencing of Kif5b reverted the peripheral mitochondrial localization in PE stimulated NRVCs and diminished PE induced increases in mitochondrial OCR, indicating that KIF5B dependent localization affects cellular responses to PE stimulated NRVCs. These results indicate that KIF5B contributes to mitochondrial localization and function in cardiomyocytes and may play a role in pathological hypertrophic responses in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2016.04.005 | DOI Listing |
Oxid Med Cell Longev
March 2022
Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Transl Res
July 2021
Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China. Electronic address:
Heart failure is one of the leading causes of death worldwide. A stimulated heart undergoes either adaptive physiological hypertrophy, which can maintain a normal heart function, or maladaptive pathological remodeling, which can deteriorate heart function. These 2 kinds of remodeling often co-occur at the early stages of many heart diseases and have important effects on cardiac function.
View Article and Find Full Text PDFJ Mol Cell Cardiol
August 2016
Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands. Electronic address:
Stem Cells Transl Med
December 2015
Department of Pharmacology, State Province Key Laboratories of Biomedicine-Pharmaceutics of China and Key Laboratories of Cardiovascular Research, Ministry of Education of China, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China Cardiovascular Research Institute, Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
Unlabelled: Bone marrow-derived mesenchymal stem cells (BMSCs) have emerged as a promising therapeutic strategy for cardiovascular disease. However, there is no evidence so far that BMSCs can heal pathological myocardial hypertrophy. In this study, BMSCs were indirectly cocultured with neonatal rat ventricular cardiomyocytes (NRVCs) in vitro or intramyocardially transplanted into hypertrophic hearts in vivo.
View Article and Find Full Text PDFPLoS One
November 2015
State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
The gene ankyrin repeat domain 1 (Ankrd1) is an enigmatic gene and may exert pleiotropic function dependent on its expression level, subcellular localization and even types of pathological stress, but it remains unclear how these factors influence the fate of cardiomyocytes. Here we attempted to investigate the role of CARP on cardiomyocyte hypertrophy. In neonatal rat ventricular cardiomyocytes (NRVCs), angiotensin II (Ang II) increased the expression of both calpain 1 and CARP, and also induced cytosolic translocation of CARP, which was abrogated by a calpain inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!