A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ellenberg's water table experiment put to the test: species optima along a hydrological gradient. | LitMetric

Ellenberg's water table experiment put to the test: species optima along a hydrological gradient.

Oecologia

Institute of Plant Sciences, Faculty of Biology and Preclinical Medicine, University of Regensburg, 93040, Regensburg, Germany.

Published: August 2016

An important aspect of niche theory is the position of species' optima along ecological gradients. It is widely believed that a species' ecological optimum takes its shape only under competitive pressure. The ecological optimum, therefore, is thought to differ from the physiological optimum in the absence of interspecific competition. Ellenberg's Hohenheim water table experiment has been very influential in this context. However, the water table gradient in Ellenberg's experiment was produced by varying the soil thickness above the water table, which confounded the potentially disparate impacts of water table depth (WTD) and soil depth on species growth. Accordingly, here we have re-evaluated Ellenberg's work. Specifically, we tested the hypothesis that physiological and ecological optima are identical and unaffected by interspecific interaction. We used the same six grasses as in Ellenberg's experiments, but in our mesocosms, WTD was varied but soil depth kept constant. The design included both an additive component (with/without plant interaction) and a substitutive component (monocultures vs. species mixtures). The results show that the physiological optima along the hydrological gradient varied greatly between species, even in the absence of interspecific interaction. Within species, however, physiological and ecological optima appeared identical in most cases, irrespective of the competition treatment. We conclude that the 'physiological capacity' of species largely determines where they are able to persist and that any impact of interspecific interaction is only marginal. These findings are at variance with Ellenberg's rule, where competition is considered to shift the distribution of a species away from its physiological optimum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-016-3624-3DOI Listing

Publication Analysis

Top Keywords

water table
20
interspecific interaction
12
table experiment
8
optima hydrological
8
hydrological gradient
8
ecological optimum
8
physiological optimum
8
absence interspecific
8
soil depth
8
physiological ecological
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!