Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10265-016-0817-0 | DOI Listing |
Glob Chang Biol
January 2025
State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China.
Tree growth and lifespan are key determinants of forest dynamics, and ultimately control carbon stocks. Warming and increasing CO have been observed to increase growth but such increases may not result in large net biomass gains due to trade-offs between growth and lifespan. A deeper understanding of the nature of the trade-off and its potential spatial variation is crucial to improve predictions of the future carbon sink.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Oxford, Chemistry, 12 Mansfield Road, OX1 3TA, Oxford, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
In homogeneous catalysis, uncovering structure-activity relationships remains very rare but invaluable to understand and rationally improve performances. Here, generalizable structure-activity relationships apply to a series of heterodinuclear polymerization catalysts featuring Co(III) and s-block metals M(I/II) (M= Na(I), K(I), Ca(II), Sr(II), Ba(II)). These are shown to apply to polycarbonate production by the ring-opening copolymerizations (ROCOP) of cyclohexene oxide (CHO) and carbon dioxide (CO2), conducted at high (20 bar) and low (1 bar) CO2 pressures, and to polyester production by copolymerization of cyclohexene oxide and phthalic anhydride (PA).
View Article and Find Full Text PDFChem Sci
December 2024
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.
View Article and Find Full Text PDFISME Commun
January 2024
BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
January 2025
Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!