The diversification of plant-feeding insects is seen as a spectacular example of evolutionary radiation. Hence, developing hypotheses to explain this diversification, and methods to test them, is an important undertaking. Some years ago, we presented the oscillation hypothesis as a general process that could drive diversification of this and similar interactions, through repeated expansions and contractions of host ranges. Hamm and Fordyce recently presented a study with the outspoken intention of testing this hypothesis where they concluded that the oscillation hypothesis was not supported. We point out several problems with their study, owing both to a misrepresentation of our hypothesis and to the methods. We provide a clarifying description of the oscillation hypothesis, and detail some predictions that follow from it. A reanalysis of the data demonstrated a troubling sensitivity of the "SSE" class of models to small changes in model specification, and we caution against using them for tests of trait-based diversification. Future tests of the hypothesis also need to better acknowledge the processes behind the host range oscillations. We suspect that doing so will resolve some of the apparent conflicts between our hypothesis and the view presented by Hamm and Fordyce.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/evo.12927 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!