Huntington's disease (HD) is a neurodegenerative disorder that is caused by an abnormal elongation of the polyglutamine (polyQ) chain in the Huntington (Htt) protein. At present, the normal function of Htt of neurons as well as the mechanism by which selective neurodegeneration is caused by the expanded polyQ chain in Htt remains ambiguous. A gain of function as a result of the elongated polyQ chain can lead to abnormal interaction of the Htt protein with its interacting partners, thereby resulting in the neuropathological changes seen in the Huntington's disease. Recent research indicates protein kinase C and casein kinase substrate in neurons protein 1 (PACSIN1) as one of the interacting partners of Htt protein. It has proven experimentally that the mutant Htt and PACSIN1 formed aggregates in the cytoplasm. This aggregation is believed to be a cause for Huntington's disease. In our study, we performed in silico investigations to predict the biomolecular mechanism of Htt/PACSIN1 interaction that could be one of the major triggers of the disease. Biomolecular interaction and molecular dynamics simulation analysis were performed to understand the dynamic behavior of native and mutant structures at the atomic level. Mutant Htt showed more interaction with its biological partner than the native Htt due to its expansion of interaction surface and flexible nature of binding residues. Our investigation of native and mutant Htt clearly shows that the structural and functional consequences of the polyQ elongation cause HD. Because of the central role of the Htt-PACSIN1 complex in maintaining connections between neurons, these differences likely contribute to the mechanism responsible for HD progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-016-0728-7 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFJ Biomed Inform
January 2025
Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:
Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.
View Article and Find Full Text PDFMolecules
January 2025
Chair and Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland.
Vitamin B (thiamine) plays an important role in human metabolism. It is essential for the proper growth and development of the body and has a positive effect on the functioning of the digestive, cardiovascular, and nervous systems. Additionally, it stimulates the brain and improves the psycho-emotional state.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.
Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.
Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!