The performance of organic electronic devices can be significantly improved by modifying metal electrodes with organic monolayers, which alter the physical and chemical nature of the interface between conductor and semiconductor. In this paper we examine a series of 12 phosphonic acid compounds deposited on the native oxide layer of aluminum (AlOx/Al), an electrode material with widespread applications in organic electronics. This series includes dodecylphosphonic acid as a reference and 11 benzylphosphonic acids, seven of which are fluorinated, including five newly synthesized derivatives. The monolayers are experimentally characterized by contact angle goniometry and by X-ray photoemission spectroscopy (XPS), and work function data obtained by low-intensity XPS are correlated with molecular dipoles obtained from DFT calculations. We find that monolayers are formed with molecular areas ranging from 17.7 to 42.9 Å(2)/molecule, and, by the choice of appropriate terminal groups, the surface energy can be tuned from 23.5 mJ/m(2) to 70.5 mJ/m(2). Depending on the number and position of fluorine substituents on the aromatic rings, a variation in the work function of AlOx/Al substrates over a range of 0.91 eV is achieved, and a renormalization procedure based on molecular density yields a surprising agreement of work function changes with interface dipoles as expected from Helmholtz' equation. The ability to adjust energetics and adhesion at organic semiconductor/AlOx interfaces has immediate applications in devices such as OLEDs, OTFTs, organic solar cells, and printed organic circuits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b02012 | DOI Listing |
BMC Chem
December 2024
School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
Magnetic activated carbon has been proved its separation ability to overcome a main drawback of activated carbon powder. However, effect of magnetization method on characterizations and Chromium (VI) adsorption of this adsorbent from Artocarpus Heterophyllus Peel (jackfruit peel) has not been investigated yet. This study magnetized jackfruit peel activated carbon using thermochemical and co-precipitation methods.
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and biological features, which pose significant challenges for early diagnosis and treatment. Metabolomics offers promising new approaches for early diagnosis, treatment, and prognosis of PCa. However, metabolomics data are characterized by high dimensionality, noise, variability, and small sample sizes, presenting substantial challenges for classification.
View Article and Find Full Text PDFMol Med
December 2024
Department of Nephrology, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China.
Background: Diabetes often causes diabetic nephropathy (DN), a serious long-term complication. It is characterized by chronic proteinuria, hypertension, and kidney function decline, can progress to end-stage renal disease, lowering patients' quality of life and lifespan. Inflammation and apoptosis are key to DN development.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
In this work, we used experiments and density functional theory calculations to investigate the mechanism and driving forces of the reductive fragmentation of NHPI esters. Mechanistic studies suggest that the fragmentation behavior of the NHPI ester is influenced not only by the electronic nature of the substituent group but also by the stability of the radical intermediate. To further investigate this transformation, we next examined the aminoalkoxycarbonylation of alkenes using alkyl -phthalimidoyl oxalates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!