A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Time-Varying Treatments in Observational Studies: Marginal Structural Models of the Effects of Early Grade Retention on Math Achievement. | LitMetric

One of the main objectives of many empirical studies in the social and behavioral sciences is to assess the causal effect of a treatment or intervention on the occurrence of a certain event. The randomized controlled trial is generally considered the gold standard to evaluate such causal effects. However, for ethical or practical reasons, social scientists are often bound to the use of nonexperimental, observational designs. When the treatment and control group are different with regard to variables that are related to the outcome, this may induce the problem of confounding. A variety of statistical techniques, such as regression, matching, and subclassification, is now available and routinely used to adjust for confounding due to measured variables. However, these techniques are not appropriate for dealing with time-varying confounding, which arises in situations where the treatment or intervention can be received at multiple timepoints. In this article, we explain the use of marginal structural models and inverse probability weighting to control for time-varying confounding in observational studies. We illustrate the approach with an empirical example of grade retention effects on mathematics development throughout primary school.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00273171.2016.1155146DOI Listing

Publication Analysis

Top Keywords

observational studies
8
marginal structural
8
structural models
8
grade retention
8
treatment intervention
8
time-varying confounding
8
time-varying treatments
4
treatments observational
4
studies marginal
4
models effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!