Prediction of Cascading Failures in Spatial Networks.

PLoS One

School of Reliability and Systems Engineering, Beihang University, Beijing, China.

Published: September 2016

Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods. We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836660PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153904PLOS

Publication Analysis

Top Keywords

cascading overload
8
overload failures
8
nodes group
8
neural network
8
failure
5
network
5
prediction cascading
4
cascading failures
4
failures spatial
4
spatial networks
4

Similar Publications

Aortic stenosis (AS) was historically considered a disease of the left side of the heart, with the main pathophysiological impact being predominantly on the left ventricle (LV). However, progressive pressure overload in AS can initiate a cascade of extra-valvular myocardial remodeling that could also precipitate maladaptive alterations in the structure and function of the right ventricle (RV). The haemodynamic and clinical importance of these changes in patients with AS have been largely underappreciated in the past.

View Article and Find Full Text PDF

Copper homeostasis and pregnancy complications: a comprehensive review.

J Assist Reprod Genet

January 2025

Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

Pregnancy complications pose challenges for both pregnant women and obstetricians globally, with the pathogenesis of many remaining poorly understood. Recently coined as a mode of cell death, cuproptosis has been proposed but remains largely unexplored. This process involves copper overload, resulting in the accumulation of fatty acylated proteins and subsequent loss of iron-sulfur cluster proteins.

View Article and Find Full Text PDF

AQP3-liposome@GelMA promotes overloaded-induced degenerated disc regeneration via IBSP/ITG αVβ3/AKT pathway.

Int J Biol Macromol

December 2024

Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:

Article Synopsis
  • Medical treatments for intervertebral disc degeneration (IDD) focus mainly on symptom relief, while effective regeneration therapies are still needed.
  • Recent findings show a negative correlation between AQP3 levels and disc degeneration, indicating its importance in maintaining disc health.
  • The study introduces a novel liposome-encapsulated AQP3 in GelMA (AQP3-lipo@GelMA) that improves cell recognition and enhances the repair of degenerated discs, showing promise for clinical use.
View Article and Find Full Text PDF

Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling.

View Article and Find Full Text PDF

CaCO-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage.

Asian J Pharm Sci

December 2024

Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.

Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!