In order to categorize the distribution, source, and effects of polycyclic aromatic hydrocarbons (PAHs) in aquatic systems of southern India, chemical and toxicological analyses were performed on surface and core sediments, collected from Adyar river, Cooum river, Ennore estuary, and Pulicat lake near Chennai city. The total PAH concentration in surface sediment ranged from 13 to 31,425ng/g with a mean value of 4320ng/g; the concentration was markedly higher in Cooum river compared to that at other sites. The historical PAH dissemination in core samples in the Cooum river, Ennore estuary, and Pulicat lake ranged from 30 to 31,425ng/g, from 8.6 to 910ng/g, and from 62 to 546ng/g, respectively. Surface sediments were predominantly contaminated with low molecular weight (LMW) PAHs. Historical profiles suggest that PAH contamination in the area is now greater than it had been in the past. PAH accumulation in Pulicat lake was distinct from that at other locations where high molecular weight (HMW) PAHs were predominant. DNA damage in HepG2 cells treated with sediment extracts from different locations showed a good correlation with their respective total PAH levels. Statistical analysis revealed that 3-ring and 4-ring PAHs may synergistically contribute to the genotoxic potency compared to others in sediments. The study also showed that a majority of PAHs in the study area indicated a petrogenic origin. Based on the enrichment and toxicological assessment of PAHs in sediments, Cooum river was shown to suffer the highest biological impairment among the studied water bodies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2016.04.016 | DOI Listing |
J Environ Manage
April 2024
Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Poland. Electronic address:
The increased load of plastic in waste streams after the COVID-19 pandemic outbreak has increased the possibility of microplastics (MPs) contamination channelling through the rivers and infiltrating the aquatic ecosystems. MPs in packaged water, community-stored water, groundwater, and surface water of Kaveri River (KR), Thamirabarani River (TR), Adyar River (AR), and Cooum River (CR) in Tamil Nadu were therefore investigated about 2 years after the COVID-19 pandemic outbreak. Using μFTIR and μRaman spectroscopy, polyamide, polypropylene, polyethylene, ethylene vinyl alcohol copolymer resin, and polyvinyl chloride were identified as the primary polymer types.
View Article and Find Full Text PDFSci Rep
December 2023
Center for Research On Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
Infections by multidrug resistant bacteria (MDR) are becoming increasingly difficult to treat and alternative approaches like phage therapy, which is unhindered by drug resistance, are urgently needed to tackle MDR bacterial infections. During phage therapy phage cocktails targeting different receptors are likely to be more effective than monophages. In the present study, phages targeting carbapenem resistant clinical isolate of E.
View Article and Find Full Text PDFChemosphere
November 2023
Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India. Electronic address:
Given the increased load of waste plastic in the solid waste stream after the outbreak of the COVID-19 pandemic, we investigated the fate of selected plastic additives along open burning dumps, industrial and residential transects in tropical riverine catchments of India. Polyurethane foam disk passive air samples, surface water and community stored water (CSW) samples were collected along the Adyar River (AR), Cooum River (CR) and canals in Chennai and Daman Ganga River (DG) in Vapi. Among the quantified phthalic acid esters (PAEs), a widely used plastic additive, di(2-ethylhexyl) phthalate (DEHP), was ubiquitous across all the transects.
View Article and Find Full Text PDFSci Total Environ
December 2022
Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India. Electronic address:
The presence of antibiotics in the aqueous environment can alter the water microbiome, inducing antimicrobial resistance genes. Hence, the occurrence of 18 antibiotics belonging to sulfonamides, fluoroquinolones, tetracyclines, phenicols, and macrolides classes were investigated in surface water, groundwater, and sewage treatment plants in Chennai city and the suburbs. Fluoroquinolones had the maximum detection frequency in both influent and effluent samples of urban and suburban STPs, with ofloxacin and ciprofloxacin showing the highest influent concentrations.
View Article and Find Full Text PDFJ Hazard Mater
September 2022
Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India. Electronic address:
During pre-pandemic time, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the surface water of Periyar River (PR) and Bharathappuzha River (BR) in Ernakulam and Malappuram districts of Kerala, respectively and Adyar River (AR) and Cooum River (CR) in Chennai district of Tamil Nadu. After the outbreak of COVID-19 pandemic, variation in OCPs and PCBs were evaluated for AR and CR. Dominance of β-HCH and γ-HCH in south Indian rivers indicate historical use of technical HCH and ongoing use of Lindane, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!