Plants are constantly exposed to a variety of toxic compounds (or xenobiotics) such as pesticides (or herbicides). Atrazine (ATZ) as herbicide has become one of the environmental contaminants due to its intensive use during crop production. Plants have evolved strategies to cope with the adverse impact of ATZ. However, the mechanism for ATZ degradation and detoxification in plants is largely unknown. Here we employed a global RNA-sequencing (RNA-Seq) strategy to dissect transcriptome variation in alfalfa (Medicago sativa) exposed to ATZ. Four libraries were constructed including Root-ATZ (root control, ATZ-free), Shoot-ATZ, Root+ATZ (root treated with ATZ) and Shoot+ATZ. Hierarchical clustering was performed to display the expression patterns for all differentially expressed genes (DEGs) under ATZ exposure. Transcripts involved in ATZ detoxification, stress responses (e.g. oxidation and reduction, conjugation and hydrolytic reactions), and regulations of cysteine biosynthesis were identified. Several genes encoding glycosyltransferases, glutathione S-transferases or ABC transporters were up-regulated notably. Also, many other genes involved in oxidation-reduction, conjugation, and hydrolysis for herbicide degradation were differentially expressed. These results suggest that ATZ in alfalfa can be detoxified or degraded through different pathways. The expression patterns of some DEGs by high-throughput sequencing were well confirmed by qRT-PCR. Our results not only highlight the transcriptional complexity in alfalfa exposed to ATZ but represent a major improvement for analyzing transcriptional changes on a large scale as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2016.04.009 | DOI Listing |
J Hazard Mater
December 2024
Department of Zoology, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand. Electronic address:
This study evaluated temporally dynamic bioaccumulation, fates, and biotransformation of atrazine (ATZ) in bivalve hemolymph. Male and female mussels, Hyriopsis bialata, were exposed to ATZ at environmentally-relevant (0.02 and 0.
View Article and Find Full Text PDFMol Inform
December 2024
Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
Interpretability and reliability of deep learning models are important for computer-based drug discovery. Aiming to understand feature perception by such a model, we investigate a graph neural network for affinity prediction of protein-ligand complexes. We assess a latent representation of ligand binding sites and investigate underlying geometric structure in this latent space and its relation to protein function.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly.
View Article and Find Full Text PDFChemosphere
December 2024
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China. Electronic address:
In electrochemical advanced oxidation processes (EAOPs), energy consumption cannot be ignored. In this work, Mn-Fe oxide/graphite felt (GF) cathodes were synthesized by in situ reduction and low temperature calcination. The obtained Mn-Fe oxide/GF was used as cathodes to activate peroxymonosulfate (PMS) for atrazine (ATZ) degradation in the EAOPs system.
View Article and Find Full Text PDFHuan Jing Ke Xue
November 2024
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
To investigate the spatial and temporal distribution characteristics and assess the ecological risks associated with emerging contaminants (ECs) in the Beijiang drinking water source, non-targeted screening was conducted using the ultra-high performance liquid chromatography-mass spectrometry technique (UPLC-MS) for one year (June 2022 to May 2023). This study also involved the quantitative detection of eight typical ECs. The results showed that through the non-targeted screening, a total of 346 pollutants were identified, with industrial materials, pharmaceuticals, and pesticides being the predominant pollutants, collectively accounting for 88.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!