Studying Haloanisoles Interaction with Olfactory Receptors.

ACS Chem Neurosci

UCIBIO@Requimte/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.

Published: July 2016

In this paper, computational means were used to explain and predict the interaction of several odorant molecules, including three haloanisoles, 2,4,6-trichloroanisole (TCA), 2,4,6-tribromoanisole (TBA), and 2,4,6-trichlorophenol (TCP), with three olfactory receptors (ORs): OR1A1, OR1A2, and OR3A1. As the X-ray structure of these ORs is not known, the three-dimensional structure of each OR was modeled by homology modeling. The structures of these ORs were stabilized by molecular dynamic simulations and the complexes of the odorant molecules with each ORs were generated by molecular docking. The theoretical results have shown that each OR has distinct but well-defined binding regions for each type of odorant molecules (aldehydes and alcohols). In OR3A1, the aldehydes bind in the bottom region of the binding pocket nearby Ser257 and Thr249. In the paralogues OR1A1 and OR1A2, the aldehydes tend to interact in the top region of the binding pocket and close to a positively charged lysine. On the other hand, the alcohols interact in the bottom region of the active site and close to a negatively charged aspartate. These results indicate that when aldehydes and alcohols odorants compete in these two ORs, the aldehydes can block the access of the alcohols odorants to their specific binding site. This observation goes in line with the experimental data that reveals that when the odorant is an aldehyde, a lower quantity of ligand is needed to cause 50% of the maximum response (lower EC50), when compared with the alcohols. The theoretical results have also allowed to explain the differences in the activity of (S)-(-)-citronellol in the wild-type and mutated OR1A1. The theoretical results show that Asn109 has a preponderant role in this matter, since when it is mutated, it leads to a conformational rearrangement of the binding pocket that prevents the interaction of (S)-(-)-citronellol with Asp111 that was shown to be important for the OR activation. The good agreement between the theoretical and experimental results also lead us to study the potential interaction of the haloanisoles, TCA, TBA, and TCP with these ORs. The results have shown that these compounds can compete with other known agonists/antagonists for the access to the binding regions of ORs. These results may partially explain the capability of these compounds to give a musty odor to food and beverages at very low concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.5b00335DOI Listing

Publication Analysis

Top Keywords

odorant molecules
12
binding pocket
12
olfactory receptors
8
or1a1 or1a2
8
binding regions
8
aldehydes alcohols
8
bottom region
8
region binding
8
alcohols odorants
8
ors
7

Similar Publications

Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans.

View Article and Find Full Text PDF

Design Principles From Natural Olfaction for Electronic Noses.

Adv Sci (Weinh)

January 2025

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Natural olfactory systems possess remarkable sensitivity and precision beyond what is currently achievable by engineered gas sensors. Unlike their artificial counterparts, noses are capable of distinguishing scents associated with mixtures of volatile molecules in complex, typically fluctuating environments and can adapt to changes. This perspective examines the multifaceted biological principles that provide olfactory systems their discriminatory prowess, and how these ideas can be ported to the design of electronic noses for substantial improvements in performance across metrics such as sensitivity and ability to speciate chemical mixtures.

View Article and Find Full Text PDF

Assessment of Garbage Enzyme as a Bioremediation Method for the Wastewater Treatment.

Biotechnol Appl Biochem

January 2025

Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.

This study evaluates the efficacy of garbage enzyme (GE) in bioremediation to reduce pollutants in sewage drains that discharge into the natural streams and rivers. Garbage enzyme is prepared with help of brown sugar, fruit, vegetable wastes, and water in the proportion 1:3:10 (by weight), which is then applied to the samples collected from various drainage sites in Jaunpur district, Uttar Pradesh, India. Different concentrations of GE (ranging from 0% to 20%) are mixed with sewage to assess pollution reduction.

View Article and Find Full Text PDF

Determination of main lipids and volatile compounds in unconventional cold-pressed seed oils through chromatographic techniques.

J Food Sci

January 2025

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina Institute of Technology, University of Messina, Messina, Italy.

The purpose of this study was to characterize unconventional cold-pressed seed oils (rosehip, strawberry, blackcurrant, carrot, plum, pomegranate, radish, and raspberry) as novel alternative edible oil source. A chemical characterization of different lipid components (total fatty acid composition, triacylglycerols, and vitamin E) and volatiles responsible for the particular aroma of these oils was reported. All the oils showed a content of unsaturated fatty acids, mainly oleic, linoleic, and α-linolenic acid, that potentially contribute to the prevention of cardiovascular diseases, in the range of 80%-90%.

View Article and Find Full Text PDF

Aim: To identify sarcopenia markers in urinary odor.

Methods: We performed solid-phase microextraction from the headspace and gas chromatography-mass spectrometry analysis of urinary volatile organic compounds (VOCs) in 71 healthy individuals and 68 patients diagnosed with sarcopenia according to the Asian Working Group on Sarcopenia 2019 criteria. The mass-to-charge ratios (m/z) of 10 VOCs with a significant difference in the total ion chromatogram of 220 VOCs detected in this study were compared by U-test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!