It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12759DOI Listing

Publication Analysis

Top Keywords

growth flowering
16
plant growth
12
vcs emitted
12
volatile compounds
8
microorganisms promote
8
promote plant
8
vcs
8
arabidopsis plants
8
plants exposed
8
exposed vcs
8

Similar Publications

Naa50 regulates ovule and embryo sac development in Arabidopsis.

Plant Cell Rep

January 2025

College of Life Sciences, Shanxi Normal University, Taiyuan, 031002, Shanxi, China.

N-terminal acetyltransferase Naa50 plays an important regulatory role in ovule development by indirectly promoting cell wall invertase 2/4 expression.

View Article and Find Full Text PDF

Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq.

Theor Appl Genet

January 2025

College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.

QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.

View Article and Find Full Text PDF

Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring.

View Article and Find Full Text PDF

Mesua ferrea L. was commonly used in Uyghur medicine, and the flowering buds of M. ferrea extract exhibited significant inhibitory effects on the proliferation of breast cancer cells in our preliminary research; however, the underlying active components remain to be elucidated.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!